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Abstract

In this thesis the observation of gigahertz Rabi oscillations to a Rydberg state in a thermal

gas of rubidium is presented. A two photon excitation scheme is usedof which the excitation

to the Rydberg state is driven by a pulsed laser. During the time of the pulse (� 4 ns) six

full Rabi cycles were achieved with a peak Rabi frequency of� 2:3 GHz. All experimental

data presented is in good agreement with a model of non-interacting three-level atoms and

will be discussed in detail.

The fully coherent dynamics shown in the experiment paves the way towards the realization

of quantum devices at room temperature such as single photon sources or quantum gates.
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1. Introduction

About 100 years ago, a new �eld of research arose: quantum mechanics. This �eld of

study founded a new age to come in physics. At �rst quantum mechanics was invented and

developed to explain observations like black body radiation, which could not be explained

with the existing classical theories. Soon after, famous people like Planck, Born, Bohr,

Schr•odinger and Heisenberg were giving a shape to the theory. With this development

a fundamental understanding for the basic components of physics like atoms, electrons

and photons and their interactions with one another was established. Quantum mechanics

shows the beauty of physics: with only a few basic postulates a vastrange of phenomena

can be explained.

On the foundation of quantum mechanics the still upcoming �eld of quantum information

processing was developed. In 1982 Richard Feynman was one of the�rst to suggest using

quantum systems for quantum simulations [1] and in 1985 David Deutsch described the

concept of a universal quantum computer [2]. It was shown that some time-consuming

issues like simulating quantum systems or factoring numbers would speed up signi�cantly

using quantum information processing (e.g. Shor's algorithm [3]). Up to now only proof-

of-concept experiments with a few qubits, the quantum analogon of classical bits, could be

realized implementing quantum algorithms. Although various quantumsystems like ion

traps [4], nuclear spins [5], electron spins [6], quantum dots [7] and others were proposed

and realized, all of them lack of scalability.

A new way of realizing a quantum system with a fair chance towards scalability [8] makes

use of Rydberg states in a thermal rubidium vapor. The focus of this thesis is �rst to show

the experimental results of coherent Rydberg excitations in a thermal gas of rubidium and

second to present a detailed study of the physics involved. Even though the coherence

time of this system is in the range of a couple of nanoseconds the coherent dynamics

could be observed by driving the Rydberg transition on the low gigahertz scale. This is a

promising �rst step towards a realization of scalable quantum devices. Various applications

in quantum information processing have been proposed for Rydberg atoms [9, 10, 11].
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2. Theoretical foundations

This chapter gives an introduction into the theoretical foundations required to explain and

discuss the observed phenomena of the experiment. As these topics have been addressed

in books, articles and theses, the explanations presented in this chapter are based on

this literature, taken, modi�ed and extended for the purpose of this thesis. The sources

for the di�erent sections are the following: 2.1 Rydberg atoms: J. Pritchard [12], 2.2.4

Autler-Townes splitting: C. Cohen-Tannoudji [13], 3 Experimental setup: E. B•ader [14]

and S. M•uller [15].

2.1. Rydberg atoms

The main property which de�nes a Rydberg atom is a highly excited electron with a large

principal quantum number n. The Rydberg series was originally identi�ed in the spectral

lines of atomic hydrogen where the binding energyW was found empirically to be related

to the formula

W = �
Ry
n2

; (2.1)

where Ry was a constant andn an integer. The theoretical underpinning for this scaling

arrived with the Bohr model of the atom in 1913 [16], from which the Rydberg constant

Ry could be derived in terms of fundamental constants

Ry =
e4me

8� 2
0h2

(2.2)

and n understood as the principal quantum number. From the Bohr model it was also

possible to derive scaling laws for the atomic properties in terms ofn, which were later

veri�ed and extended by the full quantum mechanical treatment of Schr•odinger in 1926 [17].

Table 2.1 summarizes the scaling laws of the atomic properties for thelow-` Rydberg states.

One property is the large orbital radius, another one the scaling lawof the polarizability

with n7. The consequence of the large polarizability is an enormous response to external
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2. Theoretical foundations

�elds and the ability to observe dipole-dipole interactions between atoms on the� m scale

for n � 50. Combining this with the relatively long lifetimes compared to groundstate

transitions, Rydberg atoms are well suited for applications in coherent quantum gates [11].

property n-scaling

energy di�erence of adjacentn states n� 3

binding energyW n� 2

orbital radius hr i n2

radiative lifetime � n3

polarizability n7

Table 2.1.: Scaling laws for properties of the Rydberg states [18].

2.2. Atom light interaction

The simplest case to consider the interaction between atoms and light is that of a two-level

atom driven by a coherent optical �eld. This system has been exhaustively studied (e.g.

[19, 20]), revealing a range of coherent e�ects such as Rabi oscillations [21]. However, the

addition of a third level and a second light �eld gives rise to a range of coherent phenomena.

2.2.1. Two-level atoms

In order to handle the interaction between two electronic states of an atom and a light �eld,

the level structure of an atom can be reduced to a simple two-levelsystem (see �gure 2.1).

The two di�erent states are described by

jgi :=

 
1

0

!

and jei :=

 
0

1

!

: (2.3)

The corresponding Hamiltonian without light and an energy di�erenceof ~� ge between

the ground and the excited state can be written as

H0 = ~

 
0 0

0 � ge

!

: (2.4)
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2. Theoretical foundations

jgi

jei

� ge ! ge

� ge

(a) Energy diagram

jgi

jei


 0
ge � eg

(b) Dynamics of the system

Figure 2.1.: Overview of the two-level scheme: a) Energy levels with resonance frequency
� ge of the ground to the excited state, light frequency! ge and detuning � ge.
b) Dynamic between the states involved is described by the e�ectiveRabi
frequency 
 0

ge and the decay rate �eg.

With a classical light �eld interaction turned on, the corresponding Hamiltonian has to be

modi�ed to

H = H0 + Val = ~

 
0 0

0 � ge

!

+

 
0 � dgeE(t)

� dgeE(t) 0

!

(2.5)

whereasVal describes the atom light interaction anddge the dipole matrix element. The

light �eld is expressed by a plane waveE(t) = E0(ei ! ge t + e � i ! ge t )=2.

The Rabi frequency


 ge := �
dgeE0

~
: (2.6)

is introduced to simplify the Hamiltonian to

H = ~

 
0

�
ei ! ge t + e � i ! ge t

�

 ge=2

�
ei ! ge t + e � i ! ge t

�

 ge=2 � ge

!

: (2.7)

The time evolution of the density matrix is described by the von Neumann equation

@�
@t

= �
i
~

[H; � ]; (2.8)

which is an equivalent to the Schr•odinger equation.

The corresponding density matrix is de�ned as

� :=

 
� gg � ge

� eg � ee

!

: (2.9)
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2. Theoretical foundations

The diagonal entries represent the population of the states. Theo�-diagonal entries are

called the coherences.

Up to now we have neglected dissipative e�ects. For this we have to add the Lindblad

operator L D . The full dynamics is described by the Liouville-von Neumann equation

@�
@t

= �
i
~

[H; � ] + L D (� ); (2.10)

whereas the Lindblad operator is de�ned by [22]

L D :=
1
2

X

j

�h
Cj �; C y

j

i
+

h
Cj ; � C y

j

i�
: (2.11)

The index j denotes the di�erent possible decay channels. The Lindblad operator describes

the coupling to the vacuum modes. Performing the calculation preceding for a two-level

system, where only one decay channelC1 =
p

� eg jgi hej is available, we see that the exited

state decays with the corresponding decay rate �eg and the coherences decay with �eg=2.

So we �nally obtain

L D = � eg

 
� ee � 1

2 � ge

� 1
2 � eg � � ee

!

: (2.12)

2.2.2. Rotating wave approximation

In order to simplify the equations, the system is transformed in a frame that is rotating

with the frequency of the light ! ge.

We start from the Hamiltonian of equation (2.7):

H = ~

 
0

�
ei ! ge t + e � i ! ge t

�

 ge=2

�
ei ! ge t + e � i ! ge t

�

 ge=2 � ge

!

The transformation into a rotated frame is given by the unitary matrix

U :=

 
1 0

0 e� i ! ge t

!

: (2.13)

Hence the density matrix is transformed by

� R = Uy� U =

 
� gg � gee� i ! ge t

� egei ! ge t � ee

!

(2.14)
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2. Theoretical foundations

and leads to the transformed Hamilton operator in the rotating frame

HR = UyHU � i~Uy @U
@t

= ~

 
0

�
1 + e� 2i! ge t

�

 ge=2

�
1 + e2i! ge t

�

 ge=2 � (! ge � � ge)

!

: (2.15)

The rotating wave approximation implies that the fast light frequency ! ge averages to

zero over the interaction time and can thus be neglected. Together with the detuning

� ge := ! ge � � ge the equation can be simpli�ed to

HRWA = ~

 
0 
 ge=2


 ge=2 � � ge

!

: (2.16)

By calculating the eigenvalues of the Hamiltonian, which include the atom and the light

�eld, the energies of the so-called dressed states yield

E1=2 =
~
2

�
� ge �

q

 2

ge + � 2
ge

�
: (2.17)

This results in the oscillation frequency of the population (generalized Rabi frequency) of

the two involved states:


 0
ge =

E1 � E2

~
=

q

 2

ge + � 2
ge: (2.18)

2.2.3. Three-level atoms

The addition of a third level jr i and a second light �eld ! er is a simple extension to the

two-level system but gives rise to a lot of new phenomena.

We are considering a three-level system now consisting of a groundstate jgi , an excited

state jei and a Rydberg statejr i as shown in �gure 2.2

jgi :=

0

B
@

1

0

0

1

C
A ; jei :=

0

B
@

0

1

0

1

C
A ; jr i :=

0

B
@

0

0

1

1

C
A ; (2.19)

which is interacting with a light �eld Ege(t) := E0;ge(ei ! ge t + e � i ! ge t )=2 coupling the ground

state to the excited state, and a second light �eldEer (t) := E0;er (ei ! er t + e � i ! er t )=2 coupling

the excited state to the Rydberg state. In analogy to equation (2.5) the Hamiltonian H
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2. Theoretical foundations

jgi

jei

jr i

� ge ! ge

-� ge

� er ! er

� er

(a) Energy domain

jgi

jei

jr i


 0
ge � eg


 0
er � re� rg

(b) Time domain

Figure 2.2.: Overview over the three-level scheme: a) Energy levelsand resonance fre-
quencies � ge and � er , light frequencies! ge and ! er and detunings � ge and
� er . b) Dynamic between the involved states is described by the e�ective Rabi
frequencies 
0ge and 
 0

er and the decay rates �eg,� re and � rg .

has the form

H =

0

B
@

0 � dgeEge(t) 0

� dgeEge(t) ~� ge � der Eer (t)

0 � der Eer (t) ~(� ge + � er )

1

C
A : (2.20)

The corresponding unitary matrix for the rotating frame transformation is

U =

0

B
@

1 0 0

0 e� i ! ge t 0

0 0 e� i( ! ge + ! er )t

1

C
A : (2.21)

Applying the rotating wave approximation, we �nd

HRWA = ~

0

B
@

0 
 ge=2 0


 ge=2 � � ge 
 er =2

0 
 er =2 � � ge � � er

1

C
A ; (2.22)

where we used the de�nitions� ge := ! ge � � ge and � er := ! er � � er . The transformed
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2. Theoretical foundations

density matrix for a three-level system is given by

� R =

0

B
@

� gg � geei ! ge t � gr ei( ! ge + ! er )t

� ege� i ! ge t � ee � er ei ! er t

� rg e� i( ! ge + ! er )t � ree� i ! er t � rr

1

C
A : (2.23)

If all decay channels are allowed the Lindblad operator follows as

L D = � re

0

B
@

0 0 � 1
2 ~� gr

0 ~� rr � 1
2 ~� er

� 1
2 ~� gr � 1

2 ~� re � ~� rr

1

C
A

+ � rg

0

B
@

~� rr 0 � 1
2 ~� gr

0 0 � 1
2 ~� er

� 1
2 ~� gr � 1

2 ~� re � ~� rr

1

C
A

+ � eg

0

B
@

~� ee � 1
2 ~� ge 0

� 1
2 ~� eg � ~� ee � 1

2 ~� er

0 � 1
2 ~� re 0

1

C
A :

(2.24)

2.2.4. Autler-Townes splitting

In a three-level system (�gure 2.3), where two levels are stronglycoupled due to a light

�eld, the dressed state picture can be used to explain the observable phenomena. The

coupled system 'atom + driving photons' is called 'dressed atom'. In particular as it will

be shown in the following, the Autler-Townes e�ect is associated witha level anticrossing

in the corresponding energy diagram.

Let us assume that the upper excitation fromjei to jr i is strongly coupled by a light �eld

! er and the lower excitation light ! ge is weak and out of resonance for the upper transition

and hence can be neglected for the calculation of the dressed state. The uncoupled states

which interact are described by

je; N + 1i atom in the exited statee in the presence ofN + 1 photons ! er ,

jr; N i atom in the Rydberg stater with N photons ! er .

The energy di�erence between the two states follows as

� E =
�

Ee + ( N + 1) ~! er

�
�

�
Er + N ~! er

�
= ~(! er � � er ) = ~� er : (2.25)
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2. Theoretical foundations

jgi

jei

jr i

� ge ! ge

-� ge

� er ! er

� er

(a) Energy diagram

jgi

jei

jr i


 0
ge


 0
er

(b) Dynamics of the system

Figure 2.3.: Overview over the considered three-level scheme: a) Energy levels and reso-
nance frequencies �ge and � er , light frequencies! ge and ! er and detunings� ge

and � er . b) Dynamic between the involved states is described by the e�ective
Rabi frequencies 
0ge and 
 0

er .

At resonance (� er = 0) the levels je; N + 1i and jr; N i are degenerate. As a result of the

coupling, the two statesje; N + 1i and jr; N i repel each other and form a lower and upper

perturbed or dressed statejL i and jUi , whose energies are separated by a distance~
 0
er

with


 0
er =

p

 2

er + � 2
er ; (2.26)

where 
 0
er is the e�ective Rabi frequency (see �gure 2.4).

The third state jg; N + 1i (atom in the ground state g with N + 1 photons ! er ) is not

a�ected by the light coupling ! er . The absorption spectrum of a probe �eld! ge, which

would show a single transition at the frequency �ge in the absence of the coupling light

! er , becomes a doublet as soon as thee $ r transition is driven by the �eld ! er , since both

dressed states contain an admixture ofje; N + 1i . This doublet is called the Autler-Townes

doublet. Only at resonance� er = 0 the Autler-Townes e�ect shows a symmetric splitting.

With a detuning the frequency shift and the absorption strength changes. The energy
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2. Theoretical foundations

eigenvalues of the dressed states result in

EU =
~
2

(� � er +
p

� 2
er + 
 2

er ) + � ge (2.27)

EL =
~
2

(� � er �
p

� 2
er + 
 2

er ) + � ge: (2.28)

The absorption strength for the probe transition depends on theprojection of the exited

state on the dressed state

jhej Uij 2 =
1
2

 

1 �
� erp

� 2
er + 
 2

er

!

(2.29)

jhej L ij 2 =
1
2

 

1 +
� erp

� 2
er + 
 2

er

!

; (2.30)

which is plotted in �gure 2.5. An energy diagram of the Autler-Townessplitting, where

the anticrossing of the eigenstates is visible, can be seen in �gure 2.6. The energy diagram

shows how the two components of the Autler-Townes doublet varywith the detuning.

On resonance (! er = � er ! � er = 0), one gets two lines illustrated as red arrows with

frequencies

! L;U = � ge � (
 er =2): (2.31)

The spitting is therefore

� E = ~
 er : (2.32)

Far o� resonance (j� er j � 
 er ), one of the two lines has an energy close to~� ge, the other

one is close to~(� ge + � er ). By evaluating the admixture of jei in each dressed state as

calculated in equation (2.29) and (2.30), one can determine the absorption strength of both

components of the doublet. One �nds that they are equal at resonance, whereas the line

with an angular frequency close to �ge becomes the more intense one out of resonance.

Note that for large detuning j� er j � 
 er , the distance between each dressed state and its

corresponding asymptote is nothing but the ac Stark shift of leveljei or jr i due to its

coupling with the �eld ! er which is non-resonant.

To clearly see the Autler-Townes e�ect, it is necessary to work in the strong coupling

regime, which means that the Rabi frequency 
er has to be signi�cantly larger than any

decay rate of the system. In that case the two lines of the doubletcan be resolved, even

on resonance.
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2. Theoretical foundations

� er = 0

je;1i = jr; 0i

jg;1i

� ge


 er

� L � U

jUi

jL i

! ge

(a) Dressing on resonance

� er 6= 0

jr; 0i
je;1i

jg;1i

� er

� ge

p

 2

er + � 2
er

� L � U

jUi

jL i

! ge

(b) Dressing o� resonance

Figure 2.4.: Autler-Townes splitting (a) on resonance and (b) o� resonance. On the left
hand side the �gure shows the uncoupled energies. The center illustrates the
dressed eigenstates corresponding to the absorption signal on the right, which
shows the Autler-Townes doublet.
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2. Theoretical foundations

0:5

1:0

� er

jhej L ij 2 jhej Uij 2

Figure 2.5.: Projection of the exited state to the dressed states which determines the ab-
sorptions strength on the lower transitiong $ e.

! er

! ge

� er (� er = 0)


 er

jUi

jL i

je; N + 1i

jr; N i

jg; N + 1i

� ge

� ge + � er

Figure 2.6.: Energy diagram (all frequencies have to be multiplied by~) of the dressed
states showing the Autler-Townes doublet for variable detuning (x-axis) which
is probed by the lower transition (red arrows, y-direction). The projection of
the exited state on the dressed states determines the absorptions strength and
is indicated by the gray scale value. The dashed lines show the uncoupled
states.
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2. Theoretical foundations

2.3. Optical properties

For the comparison between the simulations and the experimental data, the imaginary part

of the density matrix entry � ge can be connected to the absorption signal in the medium,

which will be shown in this section.

The electric �eld E and the polarizationP can be expressed as real numbers by satisfying

the wave equation for a plane wave as

E = 1
2(Ege � e� i ! ge t + E �

ge � ei ! ge t ) (2.33)

P = 1
2(P0 � e� i ! ge t + P �

0 � ei ! ge t ): (2.34)

The polarization can also be expressed by the atomic densityn, the dipole operatord, the

density matrix � lab in the laboratory system and the density matrix� in the rotated frame

as

P = n tr( d� lab ) (2.35)

= n (� eg;lab dge + � ge;lab deg) (2.36)

= n (� ege� i ! ge tdge + � geei ! ge tdeg) (2.37)

= n (� egdge � e� i ! ge t + ( � egdge)� � ei ! ge t ): (2.38)

By equating coe�cients of equation (2.34) and (2.38) the amplitude of the polarization

results in

P0 = 2n� egdge: (2.39)

In the slowly varying amplitude approximation [23] the amplitude of theelectric �eld Ege(z)

and the amplitude of the polarization densityP0 are connected by

@Ege(z)
@z

= i
! ge

2� 0c
P0: (2.40)

Combining the polarization amplitude (2.39) with the partial di�erential equation leads to

@Ege(z)
@z

= i
! gedegn

� 0c
� eg: (2.41)

Unfortunately the density matrix � eg depends on the electric �eldEge and hence on the

position z. From simulations it is known that the oscillation frequency of� eg primarily

depends on the strongly driven second transition, which is not mentioned yet, and the

17



2. Theoretical foundations

inuence of the lower transition Ege can be neglected. Only the amplitude of� eg decreases

monotonically over the integration distance by a factor less than two. By neglecting this,

the density matrix � eg can be regarded as independent ofz. This approximation allows

integrating the partial di�erential equation over a distance � z = zout � zin

Ege;out � Ege;in = i
! gedegn� z

� 0c
� eg (2.42)

= i C� eg (2.43)

with a constant

C =
! gedegn� z

� 0c
: (2.44)

Equation (2.43) can be rearranged to

Ege;out = i C� eg + Ege;in (2.45)

= C(i Re� eg � Im� eg) + Ege;in (2.46)

= ( Ege;in � C Im� eg) + i( C Re� eg): (2.47)

The outgoing and measured intensityI ge is proportional to jEgej2 and yields

jEge;out j2 = E 2
ge;in � (2 Ege;inC Im� eg) + ( C Im� eg)

2 + ( C Re� eg)
2 : (2.48)

In order to �nd which of the terms contribute signi�cantly, each term is evaluated with the

parameters used in the experiment:

deg = 1:09� 10� 29 Cm (see section 3.3)

� z ' 2:5 mm (see section 3.4)

n ' 1:3 � 1012 cm� 3 (see section 4.1)

Ege;in ' 1:2 � 104 V=m (see section 4.2)

� ge = 780 nm

! ge =
2�c
� ge

= 2:4 � 1015 s� 1

Re� eg ' 0:1

Im� eg ' 0:1
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2. Theoretical foundations

Hence the terms result in

E 2
ge;in ' 14:4 � 107 (V=m)2: (2.49)

2Ege;inC Im� eg ' 7:7 � 107 (V=m)2 (2.50)

(C Im� eg)
2 ' 1:0 � 107 (V=m)2 (2.51)

(C Re� eg)
2 ' 1:0 � 107 (V=m)2 (2.52)

Since the photodiode is ac coupled, the �rst term does not contribute to the observed

signal. Thus, the leading term by a factor of� 8 is the second one which is proportional to

Im� eg. This relation is used to compare the measurements with the simulations. In order

to facilitate readability, the simulation of Im� eg will be called 'simulated absorption signal'

in the following.
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3. Experimental setup

The experiment presented in this thesis realizes coherent Rydbergexcitations in a thermal

gas of rubidium. The excitation of the Rydberg state is achieved in ane�ective three-level

system coupled with two lasers as shown in �gure 3.1. The energy levels involved are the

5S1=2, 5P3=2 and the 30S1=2 state, in the following called ground statejgi , excited statejei

and Rydberg statejr i of the isotope85Rb. The ground state is coupled to the excited state

via a 780 nm cw laser and the upper transition to the Rydberg state isdriven by a 480 nm

pulsed laser.

jgi 5S1=2

jei 5P3=2

jr i 30S1=2

� ge ! ge

-� ge

� er ! er

� er

780 nm
cw

480 nm

pulsed

(a) Energy domain

jgi 5S1=2

jei 5P3=2

jr i 30S1=2


 0
ge � eg


 0
er � re

(b) Time domain

Figure 3.1.: Overview over the three-level scheme: a) Energy levelsand resonance fre-
quencies � ge and � er , light frequencies! ge and ! er and detunings � ge and
� er . b) Dynamic between the involved states is described by the e�ective Rabi
frequencies 
0ge and 
 0

er and the decay rates �eg and � re .

As the coherence time for the excited state is on the order of 100 nanoseconds [24], Rabi

frequencies of at least 100 MHz are required in order to observe coherent excitations in a

thermal gas of rubidium. Due to the weak matrix element of the upper transition to the
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3. Experimental setup

Rydberg state a high laser intensity is required to drive this transition. Hence, a pulsed

laser setup for this excitation is used in the experiment.

To describe the dynamic, at �rst the cw 780 nm laser drives the lowertransition. After

the steady state is reached, the blue 480 nm pulse is applied and the population of the

three-level system starts to oscillate. To observe the oscillations, the transmission of the

780 nm light is measured.

3.1. DAVLL spectroscopy

The 780 nm laser light has to be stabilized to a transition of the groundto the excited state.

Thus, the laser is locked by a Doppler-free Dichroic Atomic Vapor Laser Lock (DAVLL)

signal via saturation absorption spectroscopy of rubidium atoms ina magnetic �eld.

� =2 PBS Rb Cell � =4 PBS

PDs

Figure 3.2.: Optical setup for DAVLL spectroscopy for the 780 nm laser lock

The setup is shown in �gure 3.2. The beam, which is stabilized, is split intotwo parts and

guided through the rubidium cell in almost counter-propagating direction. When the atoms

interact with both beams, the probe and the pump laser, saturation e�ects are observable

in the absorption of the probe laser. So-called Lamb dips occur in theDoppler broadened

absorption spectrum exactly at the resonances. Furthermore cross-over resonance dips arise

(for details see [25]).

In order to lock the laser, a zero crossing slope is required. Hence adi�erential signal is

used: a magnetic �eld applied parallel to the propagation direction ofthe laser splits the

atomic state due to the Zeeman shift as demonstrated in �gure 3.3.The resonances for

the � + and � � components of the linearly polarized light are detuned by� � (B ) due to the

Zeeman shift. The absorption of a single� component is plotted over the frequency of the

laser in �gure 3.4a. The di�erence of the two shifted amplitudes provides a signal with a

steep slope, which is not sensitive to intensity uctuations of the laser. This is the DAVLL

signal shown in �gure 3.4b that is used to lock the laser. More details on the DAVLL can

be found for example in [26].
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3. Experimental setup

-4 -3 -2 -1 0 1 2 3 4 mF

5S1=2 F = 2

5S1=2 F = 3

5P3=2 F 0 = 1
5P3=2 F 0 = 2
5P3=2 F 0 = 3

5P3=2 F 0 = 4

� + -pol
� � -pol

Figure 3.3.: The solid black lines show the level scheme of the ground state transitions of
85Rb in a magnetic �eld. Dashed lines correspond to the levels without Zeeman
splitting. Each one of the orange and violet arrows has the same length causing
the shifted absorption spectra for� + and � � light in the Dichroic Atomic Vapor
Laser Lock. The transition 5S1=2 F = 2 ! 5P3=2 F 0 = 3 is shown.
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(a) Absorption of the 780 nm beam for a � com-
ponent plotted against the frequency of the
780 nm laser.

frequency! ge in a.u.
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(b) DAVLL lock signal: di�erence of the absorp-
tion of the � components plotted against the
frequency of the 780 nm laser.

Figure 3.4.: Absorption and DAVLL lock signal
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3. Experimental setup

3.2. EIT spectroscopy

The second laser, which is used as the seed laser for the Rydberg transition (480 nm), is

locked via EIT spectroscopy. In order to choose the frequency and stabilize the laser for

the upper excitation, both lasers are overlapped inside a rubidium cell whereas the blue

laser passes the cell twice in co- and counter-propagating direction as shown in �gure 3.5.

The inuence of the Doppler e�ect is outlined in �gure 3.6. Let us assume the 780 nm laser

is detuned from resonance by a certain detuning� ge. This detuning can be compensated

by a Doppler shift with a velocity v of an atom of

v =
c � � ge

� ge
: (3.1)

For a co-propagating con�guration, the energy level of the Rydberg state shifts in the same

direction and hence the total detuning increases as illustrated in �gure 3.6a. In counter-

propagating direction the velocity in respect to the Rydberg laser isreversed and the

frequency shift is overcompensated because the Doppler detuning depends on the transition

frequency (� er > � ge) as illustrated in �gure 3.6b. Thus two signals arise, one of the co-

and one of the counter-propagating laser, which are plotted in �gure 3.7a. The distance� cc

of the two resonances results in

j� ccj = 2 j� er;v j = 2 j� ge;vj
� er

� ge
: (3.2)

As for the DAVLL lock, a zero crossing signal is required to stabilize the laser. Hence the

same scheme with the Zeeman shift (compare �gure 3.3) is used to create a lock signal out

of the � + and � � components, which is shown in �gure 3.7b. The signal can also be used

as frequency reference according to equation (3.2). More detailson the EIT with DAVLL

can be found for example in [27].

� =4Rb Cell

PBS� =4

PDs

Figure 3.5.: EIT spectroscopy for 480 nm laser lock
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� er

� ge

� ge;v

� ge;v

� ge;v

� er;v

� er;v

jr i

jr i v

jei
jei v

jgi
(a) Co-propagating

� er

� ge

� ge;v

� ge;v

� ge;v

� er; -v

� er; -v

jr i
jr i -v

jei
jei v

jgi
(b) Counter-propagating

Figure 3.6.: Doppler e�ect leads to a detuning from resonance. Diagram shows co- and
counter-propagating Doppler shift for a velocity classv < 0 with detuning
� ge;v. In each �gure the left part shows the energy levels for an atom atrest,
in the center the level shift of thege-transition is taken into account and on
the right the shift of the er-transition is added.
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(a) EIT signal. Transmission of the 780 nm beam
for a � component plotted against the fre-
quency of the 480 nm laser.
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(b) EIT lock signal. Di�erence of the transmis-
sion of the � components plotted against the
frequency of the 480 nm laser.

Figure 3.7.: EIT and EIT lock signal
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3. Experimental setup

3.3. Pulsed laser setup

The experiment requires Rabi frequencies of at least a few hundred MHz for both transitions

in the three-level system, so that coherent e�ects can be observed in respect to the decay

rate. The Rabi frequency


 = �
d12E0

~

is proportional to the amplitude of the light �eld E0 and the corresponding dipole matrix

element d12, as introduced in section 2.2.2. The dipole matrix element for a transition

between the excited and the Rydberg state (5P3=2 F = 3 to 30S1=2) is der = 1:2 � 10� 31 Cm

[11, 28] for85Rb. This is extremely small compared to the matrix element for the transition

between the ground and the excited state (5S1=2 F = 2 to 5P3=2 F 0 = 3) dge = 1:09�10� 29 Cm

[28, 29] for85Rb and 87Rb. Therefore we need a high intensity of the 480 nm laser. This is

realized with a pulsed laser setup that ampli�es the 480 nm laser light. Similar ampli�cation

systems are described in [30] and [31].

PBS Faraday
Rotator

� =2 PBS

Dye Cell

PBS

� =2

Grating

Nd:YAG
355 nm

Seed
480 nm

Experiment

Figure 3.8.: The pulsed laser setup consists of a dye cell pumped by a frequency tripled
pulsed YAG. The cell is seeded by the 480 nm beam in four pass con�guration.

The pulsed laser setup is shown in �gure 3.8. It contains a dye cell, which is pumped by a

pulsed frequency-tripled YAG-laser of 355 nm. The 480 nm seed laser passes the cell four

times. Due to the excited molecules of the dye, stimulated emission leads to ampli�cation

of the 480 nm seed light. Note that a four pass con�guration with a single dye cell is the

highest number of passes with exactly the same trajectory possible: the beam in the �rst

and the second pass is speci�ed by its polarization, in the third and the fourth pass it is
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3. Experimental setup

distinguishable from the beam in the �rst and the second pass by its propagation direction.

The pump laser is a frequency tripled 1064 nm YAG-laser Continuum Powerlite II 8050,

which provides a time-averaged power up to 7 W of 355 nm light. The pulses have a

repetition rate of 50 Hz and a full width at half maximum duration of about 6 ns.

The dye cell is made out of glass, containing a bore for the dye and the beam with a

diameter of 1:6 mm. The 480 nm seed laser is guided through the bore of the cell, having

about the same diameter in order to reach a high e�ciency. The dye solution consists

of 0:2 g Coumarin 102 dissolved in 1̀ ethanol. Ampli�ed spontaneous emission results in

unfavorable uorescence light, which is suppressed by di�raction at a grating (for more

details see [32]).

With this setup a pulse intensity of a few mJ per pulse can be reached.The pulse is

Fourier-limited. More details and speci�cations of the system can befound in [33].

26



3. Experimental setup

3.4. Setup for Rydberg excitation

For the experiment presented in this thesis, a 5 mm glass cell (see �gure 3.9) is used. The

cell contains a reservoir of rubidium, which can be heated to increase the atomic density

inside as shown in �gure 3.10. The cell itself is heated to a higher temperature than the

reservoir in order to avoid condensation of rubidium atoms on the surface. The optical

density and temperature of the rubidium vapor is determined by absorption spectroscopy.

Figure 3.9.: Picture of a glass cell similar to the one used in the experiment. The cell
contains a reservoir �lled with rubidium.
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Figure 3.10.: Density of atomic rubidium at vapor pressure [28].

Inside the cell, the 780 nm beam and the 480 nm pulse are overlapped inalmost counter-

propagating con�guration (� = 171:5 � ; setup see �gure 3.11). With a full counter-

propagating setup the overlap at the surface of the cell leads to adirt e�ect (observed

signal dropping to zero). Nevertheless the angle must not be largein order to repress the

Doppler broadening, which will be examined in section 5.2.3. The overlapping range of the

two beams is approximately �z = 2:5 mm.

27
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PH

Block PD

Rb cell 2f

PH

APD

480 nm
pulse(e$ r )

780 nm
cw(g$ e)

Figure 3.11.: Optical setup for the measurement. The 480 nm and 780 nm beams are over-
lapped inside the cell and both transmissions are recorded by photodiodes.

To observe Rabi oscillations, it is important to have a spatially constant intensity pro�le

inside the interaction volume. Hence the 480 nm pulse (? ' 1300� m) is trimmed at

an aperture (? = 575 � m). This wavefront is imaged with two lenses into the rubidium

cell (? ' 375� m) as captured in �gure 3.12. Moreover, the 780 nm probe beam in the

overlapping volume (1=e2 ? = 340 � m) is imaged with a 2f imaging onto an aperture

(? = 150 � m) directly in front of the probe APD to cut out the inner part as illustrated

in �gure 3.13.
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(a) Beam pro�le for the 480 nm laser inside the cell.
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(b) Intensity pro�le through x = 0.

Figure 3.12.: Beam characteristics of the 480 nm light inside the cell, showing an almost
rectangular intensity pro�le with a diameter of � 375� m.
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(a) Beam pro�le for the 780 nm laser inside the cell.
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Figure 3.13.: Beam characteristics of the 780 nm light inside the cell with a 1=e2 diameter
of 340� m.

In order to correlate the occurring oscillations of the lower transition to the pulse intensity

the temporal pulse shape has to be known. After passing the cell the pulse is scattered on

a white surface to reduce its intensity. The stray light is detected on a photodiode (EOT

ET-2000) to record the temporal pulse shape. A comparison of the detection characteristics

of di�erent photodiodes is shown in �gure 3.14. The experimental data is taken with an

oscilloscope (LeCroy WaveSurfer 104MXs) at a sampling rate of 5 GS=s.
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Figure 3.14.: Comparison of the detection characteristics of di�erent photodiodes. The ET-
4000 shows to most realistic pulse shape since the electrical characteristics suit
well to the requirements. For the ET-2000 the falling slope is too slow, the
APD su�ers from AC coupling.
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4. Experimental results

For the �rst time it was possible to show Rabi oscillations to a Rydbergstate on the

gigahertz scale. The data presented here is in good agreement withthe three-level system

introduced in section 2.2.3. The model to describe the experiment is surprisingly simple

in respect to the complex level structure of an atom. Even thoughit is simple, the data

shows a range of interesting features which will be discussed in detail.

Three related measurements are performed building one data set:

� absorption spectrum (scan of� ge) at low intensity ( I ge < I ge;sat) to determine the

optical density, the atomic density and the temperature inside thecell with disabled

pulsed laser (I er = 0)

� blue intensity scan (I er ) on resonance (� ge = 0, � er = 0) with constant intensity

(I ge = const) for the lower transition

� blue frequency scan (� er ) at �xed pulse intensity ( I er = const) with the red laser being

on resonance (� ge = 0) with constant intensity ( I ge = const)

At �rst, an overview over the measured data is given. The detailed discussion will follow

in chapter 5.

4.1. Experimental parameters

The optical density, the atomic density and the temperature insidethe cell are three basic

parameters of the experiment. In order to determine these values an absorption spec-

trum is taken by the probe laser at low intensity (I ge < I ge;sat). A �t function containing

the required parameters is �tted to the signal as shown in �gure 4.1. On resonance the

signal drops to zero because of the high optical density inside the 5mm glass cell. The

values extracted from the �t are a temperature ofT = 120 � C, an atomic density of

ncell = 4:5 � 1012 cm� 3 and an optical density of� 21 for the transition 85Rb 5S1=2 F = 2
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4. Experimental results

to 5P3=2, which is later used to excite the atoms from the ground state to the intermediate

state. For the transition to the Rydberg state the optical density is low due to the low

dipole matrix element of the Rydberg transition. Hence e�ects like pulse propagation or

self-induced transparency can be neglected.

The e�ective density of atoms which are involved in the excitation scheme is less than the

total density ncell due to the natural isotope ratio of rubidium (85Rb: 72 %). As a second

loss the hyper�ne ratio of the driven ground state transition85Rb 5S1=2 F = 2 to 5P3=2 (see

section 5) with ratio of 5=12 reduces the addressable atoms. Hence the e�ective density

has come ton = 1:3 � 1012 cm� 3 in the given setup.
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Figure 4.1.: Absorption spectrum of the D2-line to determine the optical density and tem-
perature inside the cell. The red signal shows the measured data, the black
line the �t function used to extract the parameters. � ge = 0 marks the center
of the Doppler valley of the transition 85Rb 5S1=2 F = 2 to 5P3=2 used in the
experiment.
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4. Experimental results

4.2. Rabi oscillations

As described in section 3.4, the oscillations in the absorption appear as soon as the upper

excitation is driven by the pulsed laser. In �gure 4.2 Rabi oscillations are shown from a

single shot experiment. In the steady state (t < 0) the observed signal on the APD is zero

since the photodiode is ac coupled. Att = 0 the blue pulse arrives and oscillations appear

in the probe �eld, due to the changing coherences. The peak pulse intensity is measured as

I er ' 22 MW=cm2. Already in this single event it can be seen that the oscillation frequency

depends on the temporal evolution of the blue intensity. During thepulse, the oscillation

frequency starts slow at the beginning, increases and slows down again. After the pulse at

about 5:5 ns, the system is not in equilibrium anymore and damped oscillations show the

relaxation into the steady state. The frequency of this oscillation gives access to the Rabi

frequency of the lower transition (
ge ' 2� � 200 MHz). With the corresponding dipole

matrix element (see section 3.3) an electric �eld ofEge = 1:2 � 104 V=m and an intensity of

I ge = 2:0 � 105 W=m2 are calculated for this transition.
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Figure 4.2.: Single shot data: the blue line shows the pulse for the Rydberg excitation and
the red line the emerging Rabi oscillations of the probe beam (amplitudes are
not to scale). After the pulse the system is evolving back into steady state.
The falling slope of the pulse is actually stepper than shown here. Thisis due
to the characteristics of the photodiode used here (see �gure 3.14, ET-2000).
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4.2.1. Rabi oscillations for di�erent pulse intensities

By changing the intensity of the pulseI er , the e�ective Rabi oscillation changes. According

to the theory for both transitions on resonance (� ge = 0, � er = 0)


 0
er =

q

 2

ge + 
 2
er [33] (4.1)


 er =
derE0;er

~
(4.2)

I er =
1
2

c �0E 2
0;er ; (4.3)

where I er is the intensity of the upper transition, der the dipole matrix element andE0;er

the amplitude of the electric �eld, the e�ective Rabi frequency 
0
er shows a square root like

behavior


 0
er =

q

 2

ge + const � I 2
er : (4.4)

The experimental and simulated data are presented in �gure 4.3 which are in good agree-

ment. The pulse intensity increases from left to right and therefore the oscillation frequency

increases likewise.

4.2.2. Rabi oscillations for di�erent pulse detunings

For the third measurement the peak pulse intensity of the upper laser to the Rydberg state

is held constant (I er ' 22 MW=cm2), while its detuning � er is scanned. The lower transition

is on resonance (� ge = 0). The experimental data and the corresponding simulation can

be seen in �gure 4.4. For a two-level system one would expect faster oscillations out

of resonance (j� er j > 0) because of 
0er =
p


 2
er + � 2

er (see equation 2.26). However, the

experiment and simulation show a decreasing oscillation frequency with increasing detuning

instead.

In order to explain this behavior a detailed discussion will be shown in the next chapter.
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Figure 4.3.: Experimental data (upper picture) of an intensity scanI er of the upper tran-
sition with a peak pulse intensity of up to� 22 MW=cm2. For the simulation
(lower picture) the peak Rabi frequency is chosen to be 
er = 2� � 2:2 GHz to
best �t the experiment.
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Figure 4.4.: Experimental data (upper picture) of a detuning scan� er with a peak pulse
intensity of I er ' 22 MW=cm2 and the corresponding simulation (lower pic-
ture) with a peak Rabi frequency of 
er = 2� � 2 GHz chosen to best �t the
experiment.
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5. Simulation and discussion

The simple model of a three-level system (see section 2.2.3) is capable of describing the

features of this experiment. Even though rubidium is used, it turnsout that the whole

level scheme can be reduced to a ground state, an excited state and a Rydberg state which

will be shown in the next paragraph. This basic model can be simulatedeasily and allows

for a separated analysis of the occurring e�ects in order to give anintuitive picture for the

interpretation of the experimental data.

So why can we simplify the level scheme? For rubidium as an alkali atom the lower

excitation from the ground to the excited state can be realized by the D1 transition 5S1=2

to 5P1=2 or the D2 line 5S1=2 to 5P2=3 which are well separated in rubidium with� 7:1 THz.

The ground state transitions including the hyper�ne structure are illustrated in appendix

A. The hyper�ne splitting of the ground state is � 3:0 GHz for 85Rb and � 6:8 GHz for
87Rb which both exceed the Doppler broadening atT = 120 � C of � ge;FWHM ' 0:5 GHz and

hence can be resolved. The ground state used in the experiment is85Rb 5S1=2 F = 2. The

addressable hyper�ne levels from the ground state atF = 2 to the excited state cannot be

resolved since the frequency range from85Rb 5P3=2 F 0= 1 to F 0= 3 is only 93 MHz. They

are treated as one due to the Doppler broadening and the bandwidth of the upper excitation

which is � 2 GHz caused by the high intensities used (I er ' 22 MW=cm2 =̂ 
 er ' 2 GHz).

Also the transitions of the isotope87Rb are well separated from85Rb and thus do not

contribute. The Rydberg state 30S1=2 is also well separated from other states whereas the

hyper�ne structure is not resolved. This allows for reducing the system to a simple three-

level model. The coupling between the states is given by two light �elds: the so-called

probe laser for the lower transition and the coupling laser for the upper transition.

Here a short summary of the simulation model is given. The density matrix is de�ned by

� (t) :=

0

B
@

� gg(t) � ge(t) � gr (t)

� eg(t) � ee(t) � er (t)

� rg (t) � re(t) � rr (t)

1

C
A : (5.1)
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5. Simulation and discussion

The dynamic of the system is described by the Liouville-von Neumann equation

@�
@t

= �
i
~

[H; � ] + L D (� ) (5.2)

and the corresponding Hamilton operator for this system in the rotating wave approxima-

tion is given by

H (t) =

0

B
@

0 1
2 
 ge(t) 0

1
2 
 ge(t) � � ge

1
2 
 er (t)

0 1
2 
 er (t) � � ge � � er

1

C
A : (5.3)

The Lindblad operator which includes two decay channels �re and � eg results in

L D (t) =

0

B
@

� eg� ee(t) � 1
2 � eg� ge(t) � 1

2 � re � gr (t)

� 1
2 � eg� eg(t) � � eg� ee(t) + � re � rr (t) � 1

2 � eg� er (t) � 1
2 � re � er (t)

� 1
2 � re � rg (t) � 1

2 � eg� re(t) � 1
2 � re � re(t) � � re � rr (t)

1

C
A : (5.4)

The initial steady state 
 ge = const, 
 er = 0 is calculated to be

� (0) =

0

B
B
@

1 �

 2

ge

4� 2
ge +� 2

eg +2
 2
ge

2
 ge (� ge � i� re =2)
4� 2

ge +� 2
eg +2
 2

ge
0

2
 ge (� ge +i� re =2)
4� 2

ge +� 2
eg +2
 2

ge


 2
ge

4� 2
ge +� 2

eg +2
 2
ge

0

0 0 0

1

C
C
A : (5.5)

The ordinary di�erential equation (5.2) was solved numerically with a Runge-Kutta method

(RK4) in Mathematica and to speed up the calculations in a nativeJava program (more

details can be found in appendix B.1). An integration time step of �t = 0:1 ns is chosen

to sample the results su�ciently accurate. The simulation parameters are the following:

decay rate r ! e � re 10 kHz

decay rate e ! g � eg 6 MHz

Rabi frequency g $ e 
 ge 2� � 200 MHz

time step � t 0.1 ns

temperature T 120 � C

crossing angle of beams � 171.5 �

The dynamics of the system are driven by the time dependent pulse intensity and hence

the Rabi frequency 
er (t). For a thermal gas, the Doppler velocities have to be taken into

account. Hence, the simulation is performed forN = 1000 atoms where the velocity of

each atom has a random value according to the Maxwell-Boltzmann distribution.
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For an experimental setu pwhere both beams are in full counter-propagation direction

(� = 180 � ), only one dimension of the velocity distribution is required:

p(v) =
r

m
2�k B T

exp
�

�
mv2

2kB T

�
: (5.6)

The Doppler detuning � v is calculated by

� v = ! 0
v
c

(5.7)

� 0
ge = � ge + � v;ge (5.8)

� 0
er = � er + � -v;er : (5.9)

Note that the frequency shift for both light �elds is not equal:

� -v;er

� v;ge
= �

� ge

� er
� � 1:63 (5.10)

The �nal density matrix is calculated by

�� =
1
N

NX

n=1

� n ; (5.11)

where each� n is the density matrix of the n-th simulation with a random velocity accord-

ing to its probability (see equation 5.6). This formula, which is easily implemented in a

simulation, converges to the analytical result

� =
Z

v
p(v)� (v)dv; (5.12)

wherep(v) is the Maxwell-Boltzmann distribution and � (v) the density matrix for a veloc-

ity v.

If the setup is neither co- nor counter-propagating, it is necessary to use a two dimensional

velocity distribution, which is a simple extension to the given model. In the real experiment

the crossing angle is� = 171:5 � . The small di�erence to the counter-propagating con�gu-

ration is almost negligible. The angular dependence will be discussed in section 5.2.3.
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5.1. Rabi oscillations for di�erent pulse intensities

As described in section 4.2.1, the simulation for di�erent pulse intensities is in good agree-

ment with the experiment (see �gure 4.3). Whereas in the experiment the only accessible

property is the absorption, the simulation also gives access to the population of the di�er-

ent states (� gg, � ee and � rr ) which are shown in �gure 5.1. A peak pulse Rabi frequency of


 er ' 2� � 2:2 GHz �ts best the experimental data with a measured peak pulse intensity of

I er ' 22 MW=cm2. The corresponding Rabi frequency calculated with the dipole matrix

element of section 3.3 for the given intensityI er would result in 
 er = 2� � 2:3 GHz. The

di�erence between the calculated and the simulated Rabi frequency is in the tolerance of

an estimated error of the intensity (I er : � 10 %) and the uncertainty of choosing the Rabi

frequency in the simulation (
 er : � 2� � 150 MHz) best �tting to the experimental data.

During one single pulse, six full Rabi cycles can be observed (�gure 5.1c). A peak e�ective

Rabi frequency of about 
0er ' 2� � 2:27 GHz is achieved, extracted from the oscillations of

the simulation. The enhancement of the Rabi frequency 
0er � 
 er = 2� � 70 MHz is caused

by the Rabi frequency of the lower transition according to equation (4.1) 
 0
er =

p

 2

er + 
 2
ge

and the Doppler detuning with respect to equation (2.26) 
0er =
p


 2
er + � 2

er . Both e�ects

are on the 2� � 10 MHz scale.

The simulation of the excited state (�gure 5.1b) shows a steady state (t = 0) population

of 24 %. At zero temperature, the state would be populated by 50 %as 
 ge � � ge. The

reduced population is due to the Doppler distribution atT = 120 � C (� ge;FWHM = 513 MHz).

For the Rydberg state a population of 35 % (�gure 5.1c) can be achieved. In order to get

signi�cantly higher Rydberg populations the transition between theground and the excited

state has to be pulsed, too. As a proof of principle, a simulation is calculated in which both

excitation pulses arrive at the same time, have the same Rabi frequency 
 ge(t) = 
 er (t)

and have a 1=e2 pulse width of 0:33 ns. With this simple excitation scheme a Rydberg

population of well over 90 % can be achieved even in the thermal regime (see �gure 5.2).

5.2. Rabi oscillations for di�erent pulse detunings

The experimental data for di�erent pulse detunings as presentedin section 4.2.2 and �g-

ure 4.4 shows the e�ect of a decreasing oscillation frequency with increasing detuningj� er j.

In order to understand this behavior, it is instructive to further simplify the system. In

a �rst approach the pulse shape is assumed to be rectangular with aconstant Rabi fre-

quency. A corresponding simulated absorption pro�le is plotted in �gure 5.3. To make this
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Figure 5.1.: Simulated population of each of the three levels.
x-axis: pulse peak Rabi frequency 
er in [2� GHz]
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Figure 5.2.: Simulated population of the Rydberg state in a setup where both transitions
are driven simultaneously with a 1=e2 pulse width of 0:33 ns.
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Figure 5.3.: Simulated absorption spectrum for a rectangular pulse shape with a constant
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er = 2� � 1:3 GHz.
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simulation comparable to the previous simulations the Rabi frequency for this simulation


 er = 2� � 1:3 GHz is chosen such that the same number of oscillations occur in the�rst

4:5 ns, which is the plotted time range of most �gures. The inuence ofthe pulse shape

will be examined in detail in section 5.2.2. First the Autler-Townes splitting in combi-

nation with the thermal velocity distribution is discussed which builds the framework for

explaining the experimental data.

5.2.1. Autler-Townes splitting

The main properties of the experiment are described by an Autler-Townes splitting intro-

duced in 2.2.4, involving the two upper states which is caused by the strongly driven upper

transition with the pulsed laser. This coupled system is probed by thecw probe laser

driving the lower transition. Since the Autler-Townes splitting and the Doppler shift have

about the same magnitude, none of them dominates the system andthe interplay of each

other has to be examined.

The �nal density matrix of a simulation as given in equation (5.12) is thesum over all veloc-

ity dependent density matrices multiplied by their weight factor of the Maxwell-Boltzmann

distribution. Hence a look at the di�erent velocity classes is helpful for explaining the

results of the system obtained. As a �rst velocity class we assume atoms at rest (v = 0)

so that no additional Doppler detuning occurs (� ge;v = � er; -v = 0). The scan range for the

detuning � er we choose is within� 2� � 2 GHz. It is therefore symmetric with respect to

� er = 0 and indicated by the blue line in the energy diagram in �gure 5.4. The anticross-

ing point of the Autler-Townes splitting is exactly in the center of theabsorption pro�le

� er = 0. For this velocity class the absolute absorption signal (�gure 5.5) is weak because

the levels of the dressed states cannot be crossed due to the anticrossing. At the center

(� ge = 0) the two modes of the Autler-Townes doublet interfere constructively as they have

a symmetric energy splitting of� ~ 
 er =2 at this frequency.

As a next velocity class we select a speed of� 400 m=s (�gure 5.6). The Doppler shift

causes a detuning of� ge;v = � 2� � 513 MHz and � er; -v = 2� � 829 MHz. That means the

probe range in the energy diagram has shifted to the right and slightly to the bottom due

to the Doppler detuning (see �gure 5.4). Here, one of the resonances of the dressed state is

crossed and we observe a strong signal there (see �gure 5.6) andthe oscillation slows down

according to 
 0
er =

p

 2

er + � 2
er . The absorption spectrum itself is not symmetric anymore

but the sum over all velocities will end up being symmetric, since the absorption pro�les

of velocitiesv and � v are just ipped along the center of the frequency axis� er = 0. In all

plots the two modes arising from the Autler-Townes doublet are visible.
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Figure 5.4.: Autler-Townes splitting for 
 er = 2� � 1:3 GHz. Frequency scans forv = 0 m=s
and v = � 400 m=s are highlighted in blue.

At the experimental temperature ofT = 120 � C the standard deviation of the velocity

distribution is

� v =

r
kB T
m

= 196 m=s: (5.13)

A variety of velocity classes is shown in �gure 5.7, where the color code indicates the

simulated absorption strength multiplied by its weight factor according to the Maxwell-

Boltzmann distribution (equation 5.6). Atoms at rest or with low velocity are far away

from the resonances of the split system and hence have a low signalalthough their weight

factor is high. At high velocities (e.g. 400 m=s) the signal is also low although a resonance

is crossed because its weight factor has dropped to almost zero. Hence the velocities in

between dominate the total absorption: at velocities of aroundjvj = 100 m=s a resonance

is almost inside the scan range and the corresponding weight factoris still high enough to

give a strong signal. If we �nally sum up all velocity classes, we end up with a simulated

absorption pro�le (�gure 5.3) close to the observed experimentalsignal (�gure 4.4).

To conclude and explain the �nal result it can be said that the Autler-Townes doublet is

probed by the di�erent velocity classes that exist due to the Doppler distribution. The

oscillations slow down with increasing scan detuningj� gej since both resonance frequencies

of the Autler-Townes doubled are outside or at the edge of the scan range for the relevant

velocity classes. In other words, the highest detuning from the Autler-Townes doublet is

reached at� er = 0 and thus the oscillations are the fastest there.
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Figure 5.5.: Simulated absorption spectrum for the velocity classv = 0 with a rectangular
pulse shape of 
er = 2� � 1:3 GHz.
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Figure 5.6.: Simulated absorption spectrum for the velocity classv = � 400 m=s with a
rectangular pulse shape with 
er = 2� � 1:3 GHz. The detunings resulting from
velocities are� ge;v = � 2� � 513 MHz and� er; -v = 2� � 829 MHz.
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5.2.2. Pulse shape dependence

Up to now we used a rectangular pulse shape for instructional purpose. With the given

experimental setup only a Gaussian-like pulse shape is accessible. The transition from a

rectangular pulse shape to the real one will explain the di�erence ofthe previous simulations

to the experimental data. Mainly two aspects have to be taken intoaccount:

� as the pulse intensity is varying temporally, the Rabi frequency changes accordingly

� the Autler-Townes splitting depends on the pulse intensity �E = ~
p


 2
er + � 2

er (see

equation 2.32) and thus the splitting changes during the interaction

In order to visualize these e�ects, the peak Rabi frequency of the Gaussian-like pulse

(
 er = 2� � 2 GHz) is divided into six equally spaced intensities as shown in �gure 5.8.For

low Rabi frequencies (
ge < 2� � 1 GHz) the resonances of the Autler-Townes doublet are

probed within the scan range. The oscillations are slow due to the low Rabi frequency and

the low detunings from the Autler-Townes levels. With an increased Rabi frequency the

oscillations frequency increases due to the Rabi frequency itself and due to the increased

splitting causing a higher detuning.

One has to be aware that the �nal dynamics for a Gaussian pulse is not a sum over all

shown intensities. Instead the dynamic starts at a low intensity, rises up to the peak in-

tensity and returns to a low one again, according to the pulse shape.

The di�erence between a rectangular and a Gaussian pulse shape together with two inter-

mediate states is shown in �gure 5.9. Note that the pulse is not shownin its full length

but the �rst 4 :5 ns are displayed as for the experimental data. The pulse intensities for

the non-Gaussian pulses are chosen such that att = 4:5 ns the same oscillatory phase is

achieved as for the Gaussian pulse in order to be comparable to eachother. Due to the

averaging e�ect of the di�erent intensities during the pulse only theslow mode remains,

the faster one vanishes. The �nal simulation reproduces the experimental data (compare

�gure 4.4).
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5.2.3. Angular dependence

The visibility of the oscillations depends on the crossing angle betweenboth lasers as

illustrated in �gure 5.10. In a co- or counter-propagating setup the absolute value of

the velocity is the same for each atom in respect to the lasers. A co-propagating setup

has a weak visibility since a Doppler shift causes a detuning of each transition in the

same direction and thus increases the total detuning. For a perpendicular setup both

detunings are independent of each other and hence the signal washes out. In contrast, a

counter-propagating setup has the best visibility since both detunings are connected to each

other as for the co-propagating setup, but instead of increasingthe detuning it is partly

compensated by the opposite laser. With an angle of 171:5 � as used in the experiment

(see section 3.4) a high visibility is obtained.
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Figure 5.10.: Simulated absorption spectrum for di�erent crossing angles of the beams.
x-axis: � er [2� GHz], y-axis: time [ns], color code: Im� eg range: � 0:17
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5.2.4. Temperature dependence

In order to change the atomic density inside the sample the temperature of the rubidium cell

can be changed as presented in section 3.4. But a change in temperature also has an impact

on the Doppler velocity distribution and hence on the absorption signal as simulated in

�gure 5.11. The standard deviation for the Doppler distribution is given in equation (5.13)

� v /
p

T. At room temperature the relative temperature change on the Kelvin scale is

small and causes only a small change in the Doppler pro�le. Hence almost no e�ects of

heating or cooling the system can be seen at this temperature. Note that at T = 0 K the

only remaining velocity class isv = 0 and hence no averaging e�ect due to the Doppler

distribution takes place.
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Figure 5.11.: Simulated absorption spectrum for di�erent temperatures.
x-axis: � er [2� GHz], y-axis: time [ns], color code: Im� eg range: � 0:16
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5.3. Further development

The long-term goal of the work presented is to build quantum devices using the principle of

fast coherent dynamics shown in this thesis even at room temperature. In order to realize

single photon sources [34] and quantum gates [11], the setup of thisexperiment has to

be adapted in a way that the Rydberg-Rydberg interaction emerges so that the Rydberg

blockade e�ect [35] dominates.

Up to now an e�ective atomic density of� 1:3 � 1012 cm� 3 is used in the experiment (see

section 4.1). The density of atoms which can be excited to the Rydberg state is less due to

the maximum Rydberg population reached (35 %) in this excitation scheme. So roughly a

Rydberg density of 5� 1011 cm� 3 is reached in the presented experiment.

In order to see the Rydberg blockade, the addressable atoms must have at most a dis-

tance less than the blockade radius here coarsely de�ned by the frequency shift due to the

Rydberg-Rydberg interaction in range of the bandwidth of the experiment (� 2 GHz, see

section 5).

The frequency shift of rubidium-rubidium molecules is extracted from calculations for these

molecules of the 35S, 45S and 55S states [36] and extrapolated as presented in �gure 5.12.

To determine the average distance to the next neighbor a simulationwas performed for

a non-interaction ideal gas where the atoms were randomly placed ina volume according

to the density given (see �gure 5.13). In a simple cubic lattice one would have a distance

to the next neighbor of d = 3
p

1=� , where � is the atomic density. With respect to the

simulation the average next neighbor distance is 40 % less than in a cubic lattice.

In the experiment, the average distance of two neighboring Rydberg atoms is according

to the e�ective density about 0:75� m. The blockade radius for a level shift of 2 GHz for

the 30S state is about 0:5� m, which is already close to the average distance to the next

neighboring atom.

In order to enter the blockaded regime one possibility is to increase the principal quantum

number n. A state above 45S has a blockade radius greater than 1� m which should be

su�cient to see the blockade. One has to �nd a rubidium Rydberg state in which the

corresponding molecular state of the Rydberg atoms is well separated from any other state

in order to see the blockade. Another possibility to reach higher interaction is to increase

the temperature and hence the atomic density leading to a smaller distance between the

atoms. To cut the distance between two atoms to half an increaseddensity by a factor of 23

is required. This can be achieved by heating the sample by 40 K. Here the molecular states

also have to �t so that the blockade can be seen. The indicator to bein the blockaded
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regime is an asymmetrical absorption pro�le in respect to the detuning � er and an increased

Rabi frequency 
 0
er due to a collective enhancement [37].
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Figure 5.12.: Distance between two rubidium atoms for a level shift ofthe Rydberg state of
1 GHz (red) and 2 GHz (blue) [36]. The dashed lines show the proportionality
n11=6 according to theory.
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The results presented in this thesis give certainty that fully coherent dynamic processes

involving Rydberg states can be realized in a cell of rubidium vapor even above room tem-

perature. In the experiment a bandwidth-limited pulsed excitation with a pulse duration

of � 4 ns was used to couple to the Rydberg state. During the pulse, six full Rabi cycles

to the Rydberg state could be observed resulting in a peak Rabi frequency of� 2:3 GHz.

Due to this high Rabi frequency the thermal gas inside the cell can be regarded as frozen

on the relevant timescale.

Despite the complicated level structure of rubidium it has been shown that a simple three-

level system is capable of describing the dynamics observed in the experiment: due to the

bandwidth of the experiment (� 2 GHz) and the transitions chosen the level scheme of

rubidium can be reduced to the transition from the ground state 5S1=2 F = 2 to the excited

state 5P3=2 and from there to the Rydberg state 30S1=2. The hyper�ne levels of the excited

state are close together (� 100 MHz) and thus are treated as one as they are not resolved.

For the experiment the lower transition is driven by a cw probe laser (780 nm) of which

the transmission is measured. The upper transition is driven by a pulsed laser (480 nm)

to reach the high intensities required to compensate for the weak dipole matrix element of

this Rydberg transition. High Rabi frequencies on the gigahertz range are required due to

the coherence time of up to a couple of nanoseconds.

At �rst the dependency of Rabi oscillations on the intensityI er of the upper transition was

studied. A square root like behavior 
e� /
p


 2
ge + a I er was observed as expected for a

three-level system with both transitions resonantly driven. Furthermore the system was

examined for di�erent detunings� er of the upper transition. The experimental data showed

the fastest oscillations for both transitions on resonance. With anincreasing detuningj� er j

the oscillations became slower which is di�erent from a two-level system where the Rabi

frequency increases with the detuning 
e� =
p


 2
er + � 2

er .

In order to get an insight into the physical mechanisms the three-level atom was simulated

even in a more simpli�ed system: the pulse shape was assumed to be rectangular. With
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6. Summary and Outlook

that the dominating e�ect describing the dynamic of the experiment, an Autler-Townes

splitting together with the inuence of the Doppler shift of the atoms, could be studied in

detail. It turns out that atoms with a velocity of jvj ' 100 m=s have the highest impact on

the absorption signal. Signi�cantly faster atoms are rare due to the Doppler distribution

and atoms at rest or of low velocities are high in numbers but out of resonance due to the

anticrossing of the Autler-Townes splitting.

Furthermore the inuence of the pulse shape was examined. For a rectangular pulse the

Autler-Townes spitting is constant whereas for a Gaussian-like pulse as used in the exper-

iment the splitting changes during the interaction time. Thus the faster oscillatory mode

out of the two from the Autler-Townes doubled washes out and onlythe slow one remains.

Additionally the dependence of the crossing angle of the two laser beams was examined.

The best signal can be observed in counter-propagating directionsince the velocities of the

atoms have the lowest impact here. Within a deviation angle of� 15 � the visibility almost

does not change. For experimental reasons one laser was slightly rotated by 8:5 � to avoid

an overlap at the cell surface with the second laser.

Another parameter of the system is the temperature. Heating orcooling has an inuence

on the Doppler distribution and hence on the absorption signal. For the experiment at a

temperature ofT ' 120 � C a change of� 100 K has almost no inuence on the absorption

signal which is due to the small relative change of the Doppler distribution � v /
p

T.

As a last result the Rydberg blockade radius of the current experiment was estimated and

the average distance between two neighboring atoms simulated. Itturns out that the dis-

tance between atoms in the Rydberg state is already close to the Rydberg blockade radius.

In order to estimate the change required to enter the blockaded regime the dependency of

the atomic density and the distance of two neighboring atoms was studied. Moreover the

level shift for di�erent principal quantum number n was examined. The rubidium molec-

ular states show a non-trivial behavior in the blockade distance. Some of the states mix

depending on the Rydberg state which can suppress the blockade.Further studies will be

required.

The �nal step after the blockaded regime will be reached is to decrease the cell volume to

a size where only one excitation can exist in one cell [8]. Here the interaction of the atoms

and the wall of the cell is an issue. It has been shown that certain principal quantum

numbersn cause only weak wall-induced e�ects and hence are candidates for ause in these

cells [38]. Finding an appropriate Rydberg state is crucial to satisfy all constrains for the

wall interaction and the Rydberg blockade radius including the molecular states.
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6. Summary and Outlook

This thesis provides measurements that suggest a thermal gas ofrubidium as a system

for the physical realization of a quantum system. The basic requirements, the coherent

dynamics, could be observed in the experiment. This builds the basis for a further devel-

opment of di�erent quantum devices in a thermal gas of rubidium as quantum gates [11],

single photon emitters [34] or absorbers [39].

The next steps for a further development of this new approach are sketched and with cer-

tainty there will be a lot of interesting physics to investigate in orderto �nally realize a

scalable quantum device.
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A. Level scheme and D1/D 2 absorption

spectrum of Rubidium
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Figure A.1.: Ground state transitions of rubidium87Rb and 85Rb [40].
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A. Level scheme and D1/D 2 absorption spectrum of Rubidium

Figure A.2.: Absorption spectrum of D1 line (5S1=2 ! 5P1=2)
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A. Level scheme and D1/D 2 absorption spectrum of Rubidium

Figure A.3.: Absorption spectrum of D2 line (5S1=2 ! 5P3=2) [41]
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B. Simulation details

B.1. Solving di�erential equations numerically

The ordinary di�erential equation which describes the time development of the density

matrix as introduced in chapter 5

@�
@t

= �
i
~

[H; � ] (B.1)

is well suited to be solved by numerical integration. Two approacheswill be presented: a

simple one (Euler method) and a powerful widespread approach (Runge-Kutta method).

The simplest numerical integration algorithm is the Euler method. Letus assume we have

a di�erential equation
@y(t)

@t
= y(t); (B.2)

which is integrated analytically to y(t) = e t with the initial condition y(0) = 1. For �nite

time steps this di�erential equation can be transformed to a di�erence equation

� y
� t

= y ! � y = y� t: (B.3)

The di�erential equation is approximated by

y[t + 1] := y[t] + � y[t; y[t]]: (B.4)

For a time step of � t = 1 and the given initial condition the discrete calculated values are

t y[t] � y[t] y[t + 1]

0 1 1 2

1 2 2 4

2 4 4 8
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B. Simulation details

The comparison between the discrete and analytical integration is shown in �gure B.1. The

chosen time step �t = 1 leads to a coarse approximation of the given di�erential equation.

The accuracy would increase by using smaller time steps.

0

2

4

6

8

10

0 1 2
t

y

y = et

b
b

b

Figure B.1.: Numerical integration ofy0 = y using the Euler method.

The idea of the Euler method is improved by the Runge-Kutta algorithm (here presented

in forth order), which is used in Mathematica as default algorithm to solve di�erential

equations numerically. The calculation rule and the calculated values for the example

y0 = y; � t = 2 are

@y
@t

= f (t; y) (B.5)

y[t + 1] := y[t] +
1
6

(a1 + 2a2 + 2a3 + a4)� t (B.6)

a1 = f (t; y) (B.7)

a2 = f (t +
� t
2

; y +
� t
2

a1) = f (t +
� t
2

; y1) (B.8)

a3 = f (t +
� t
2

; y +
� t
2

a2) = f (t +
� t
2

; y2) (B.9)

a4 = f (t + � t; y + � t a3) = f (t + � t; y3) (B.10)

coe�. an yn an

a1 1 1

a2 2 2

a3 3 2.5

a4 7 7
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B. Simulation details

With these coe�cients the new value ofy can be calculated:

y[t = 2] = 1 +
1
6

(1 + 2 � 2 + 2 � 2:5 + 7) � 2 = 5 (B.11)

The Runge-Kutta method will be explained with the graphical schemeof �gure B.2.

The �rst part of the algorithm is similar to the Euler method. First the coe�cient

a1 is calculated (equation B.7) with a value according to the given di�erential equation

y0 = y; y = 1 ! a1 = 1. With this new slope half a time step is executed illustrated by

the dashed line. At the new position the di�erential equation is evaluated (B.8) and gives

a2 = 2. This is the new slope (indicated by the arrow) for another half step starting again

from t = 0. This third position is evaluated again (B.9) giving the slopea3 = 3 for the last

(full) step performed which starts again att = 0. Here the forth coe�cient a4 (B.10) can be

calculated. Now a weighted average (B.6) gives the slope for the integration and the �nal

position is reached, highlighted as the thick dot in the diagram. This algorithm results in

a higher accuracy compared to the Euler method. The Runge-Kutta method outperforms

the Euler method due to a smaller error: the error per step for theEuler method is of order

(� t)2 whereas for the Runge-Kutta method it is (� t)5.
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0 1 2
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b

b

y = et

a1

a2

a3

a4

y(0) + � t � �a

Figure B.2.: Numerical integration ofy0 = y using the Runge-Kutta method.
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B. Simulation details

B.2. Simulation in Java

In this section the core source code for the simulation of the density matrix in time is shown.

This is possible since the di�erential equation for a three-level atomis only a system of

nine �rst order di�erential equations. These equations can be further reduced since the

density matrix is Hermitian. As a drawback,Java cannot handle complex numbers. Hence

the equations are solved for their real and imaginary part separately, which is denoted as

Re and Im in the following. Note that the levels of the atoms are addressed by numbers

not by letters (1 =̂ g, 2 =̂ e and 3 =̂ r ). The initial condition is given by equation (5.5) and

calculated at the initialization of the density matrix entries:

double Omega1 Ini t = Omega1 Sampled [ 0 ] ;
double denominator = 4 � Del ta1 � Del ta1 + Gamma12 � Gamma12

+ 2 � Omega1 Ini t � Omega1 Ini t ;
double Rho11 Re = 1 � Omega1 Ini t � Omega1 Ini t / denominator ;
double Rho22 Re = 1 � Rho11 Re ;
double Rho12 Re = 2 � Omega1 Ini t � Del ta1 / denominator ;
double Rho12 Im = Omega1 Ini t � Gamma12 / denominator ;
double Rho33 Re = 0 ;
double Rho13 Re = 0 ;
double Rho13 Im = 0 ;
double Rho23 Re = 0 ;
double Rho23 Im = 0 ;

The dynamic of the real system is described by the di�erential equation (5.3). Here the

equation is solved by the Euler method since the code for the Runge-Kutta method does

not give any new insights and is almost the same as the Euler one but repeated four times.

The algorithm is divided into two parts. At �rst the slope is calculated (denoted asD ) for

the next time step as presented in equation (B.4):

Omega1 = Omega1Sampled [ t ] ;
Omega2 = Omega2Sampled [ t ] ;

D Rho11 Re = � (Rho12 Im � Omega1) + Gamma12 � Rho22 Re ;
D Rho22 Re = Rho12 Im � Omega1 � Rho23 Im � Omega2

� Gamma12 � Rho22 Re + Gamma23 � Rho33 Re ;
D Rho33 Re = Rho23 Im � Omega2 � Gamma23 � Rho33 Re ;

D Rho12 Re = Del ta1 � Rho12 Im � (Omega2 � Rho13 Im ) / 2 .
� ( Rho12 Re � Gamma12) / 2 . ;

D Rho13 Re = ( � 2 � ( 0 . 5 � Omega2 � Rho12 Im � ( Del ta1 + Del ta2 ) � Rho13 Im )
+ Rho23 Im � Omega1 � Rho13 Re � Gamma23) / 2 . ;

D Rho23 Re = ( 2 � Rho23 Im � Del ta2 + Rho13 Im � Omega1
� Rho23 Re � (Gamma12 + Gamma23) ) / 2 . ;

D Rho12 Im = ( � 2 � Rho12 Re � Del ta1 + Rho13 Re � Omega2
� Rho12 Im � Gamma12 + Omega1 � ( Rho11 Re � Rho22 Re ) ) / 2 . ;
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B. Simulation details

D Rho13 Im = ( 0 . 5 � Omega2 � Rho12 Re � ( Del ta1 + Del ta2 ) � Rho13 Re )
� ( Rho23 Re � Omega1) / 2 . � ( Rho13 Im � Gamma23) / 2 . ;

D Rho23 Im = ( � 2 � Rho23 Re � Del ta2 � Rho13 Re � Omega1
� Rho23 Im � (Gamma12 + Gamma23) + Omega2 � ( Rho22 Re � Rho33 Re ) ) / 2 . ;

In the second part of the algorithm the propagation takes place:

Rho11 Re += timeStep � D Rho11 Re ;
Rho22 Re += timeStep � D Rho22 Re ;
Rho33 Re += timeStep � D Rho33 Re ;

Rho12 Re += timeStep � D Rho12 Re ;
Rho13 Re += timeStep � D Rho13 Re ;
Rho23 Re += timeStep � D Rho23 Re ;

Rho12 Im += timeStep � D Rho12 Im ;
Rho13 Im += timeStep � D Rho13 Im ;
Rho23 Im += timeStep � D Rho23 Im ;

This is already the full source code to calculate the temporal evolution of the density

matrix with Java. Since it is such a short code the performance of the Euler algorithmis

outstanding and also of the Runge-Kutta method.

This model has also been extended to cover two or three interacting atoms. A performance

comparison is given in the next section, the increase of lines of code isshown here:

atoms density matrix lines of code for Euler method

1 3x3 18

2 9x9 162

3 27x27 1458

63



B. Simulation details

B.3. Performance of Mathematica, Java and C ++

With Mathematica as a computational software program a vast variety of mathematical

problems can be solved. But due to its universality its performance isslower than a native

program solving speci�c equations. Here a performance comparison betweenMathematica

as a generic computational software,Java and C++ which are native computer languages,

is given. In order to compare the performance between the di�erent tools a simulation for

one, two and three atoms is performed using the Euler method to integrate the di�erential

equation. The time step is chosen to be �t = 10� 10 s and the simulation duration is 10� 5 s.

Therefore 105 time steps are calculated. The results are shown in the following table:

calc. time [ms] calc. time [ms] calc. time [ms]

atoms density matrix Mathematica Java C++

1 3x3 1 � 104 3 � 100 2 � 100

2 9x9 2 � 105 4 � 101 2 � 101

3 27x27 n.a. 1 � 104 1 � 102

The simulations are computed on Intel Core i7 860 @ 2.80 GHz using a single core. Note

that in the simulation for three atoms the implemented Hamiltonian hasonly one free

parameter� er and no decays are included. For the other simulations the decaying channels

were implemented and the parameters (
ge; � ge; � eg; 
 er ; . . . ) could be changed.

The performance rates of the di�erent solving methods are as expected. Mathematica at

least 103 times slower thanJava and C++ as a generic solving tool. The only signi�cant

di�erence betweenJava and C++ appears in the simulation for three atoms. Here the just-

in-time compiler of Java cannot optimize the calculation signi�cantly anymore and the

precompiledC++ simulation is much faster.
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B. Simulation details

B.4. Various simulations

On the following pages di�erent simulations of basic experimental parameters are given:

� Detuning scan of cw laser� ge (�gure B.3)

� Rabi frequency scan of cw laser 
ge (�gure B.4)

� Detuning scan of pulse� er (�gure B.5)

� Rabi frequency scan of pulse 
er (�gure B.6)

The �rst two scans of the cw laser for the ground state transitionare presented since they

are not accessible in the experiment but can help to understand thewhole system. The scan

parameters of all four simulations were chosen to have higher intensities and frequencies

than used in the experiment.
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B. Simulation details

Detuning scan of cw laser � ge
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Figure B.3.: Detuning scan of pulse� ge, y-axis: time [ns]
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Rabi frequency scan 
 ge of cw transition

� ge: 0 GHz


 ge: see x-axis
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Figure B.4.: Rabi frequency scan 
ge of cw transition, y-axis: time [ns]
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Detuning scan of pulse � er
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Figure B.5.: Detuning scan of pulse� er , y-axis: time [ns]
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Rabi frequency scan of pulse 
 er
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