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Abstract

In this thesis the observation of gigahertz Rabi oscillations to a Ryxkrg state in a thermal
gas of rubidium is presented. A two photon excitation scheme is usefdwhich the excitation
to the Rydberg state is driven by a pulsed laser. During the time of thpulse ( 4 ns) six
full Rabi cycles were achieved with a peak Rabi frequency of2:3 GHz. All experimental
data presented is in good agreement with a model of non-interaaggithree-level atoms and
will be discussed in detail.

The fully coherent dynamics shown in the experiment paves the wagwards the realization
of quantum devices at room temperature such as single photon sges or quantum gates.
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1. Introduction

About 100 years ago, a new eld of research arose: quantum maoits. This eld of
study founded a new age to come in physics. At rst quantum mechés was invented and
developed to explain observations like black body radiation, which clounot be explained
with the existing classical theories. Soon after, famous people likéaRck, Born, Bohr,
Schredinger and Heisenberg were giving a shape to the theory. Withis development
a fundamental understanding for the basic components of physidike atoms, electrons
and photons and their interactions with one another was establisthe Quantum mechanics
shows the beauty of physics: with only a few basic postulates a vasinge of phenomena
can be explained.

On the foundation of quantum mechanics the still upcoming eld of gantum information
processing was developed. In 1982 Richard Feynman was one of theto suggest using
quantum systems for quantum simulations [1] and in 1985 David Deuts described the
concept of a universal quantum computer [2]. It was shown that s@ time-consuming
issues like simulating quantum systems or factoring numbers wouldesa up signi cantly
using quantum information processing (e.g. Shor's algorithm [3]). Umtnhow only proof-
of-concept experiments with a few qubits, the quantum analogori olassical bits, could be
realized implementing quantum algorithms. Although various quantunsystems like ion
traps [4], nuclear spins [5], electron spins [6], quantum dots [7] and etk were proposed
and realized, all of them lack of scalability.

A new way of realizing a quantum system with a fair chance towardsaability [8] makes
use of Rydberg states in a thermal rubidium vapor. The focus of #hthesis is rst to show
the experimental results of coherent Rydberg excitations in a thmal gas of rubidium and
second to present a detailed study of the physics involved. Evenoilgh the coherence
time of this system is in the range of a couple of nanoseconds the eamnt dynamics
could be observed by driving the Rydberg transition on the low gigahe scale. This is a
promising rst step towards a realization of scalable quantum devise Various applications
in guantum information processing have been proposed for Rydigeatoms [9, 10, 11].



2. Theoretical foundations

This chapter gives an introduction into the theoretical foundatios required to explain and
discuss the observed phenomena of the experiment. As theseidsphave been addressed
in books, articles and theses, the explanations presented in thisagter are based on
this literature, taken, modi ed and extended for the purpose ofhis thesis. The sources
for the dierent sections are the following: 2.1 Rydberg atoms: J. fichard [12], 2.2.4
Autler-Townes splitting: C. Cohen-Tannoudji [13], 3 Experimenthsetup: E. Bader [14]
and S. Maller [15].

2.1. Rydberg atoms

The main property which de nes a Rydberg atom is a highly excited elgon with a large
principal quantum numbern. The Rydberg series was originally identi ed in the spectral
lines of atomic hydrogen where the binding energy was found empirically to be related
to the formula

(2.1)

where Ry was a constant anch an integer. The theoretical underpinning for this scaling
arrived with the Bohr model of the atom in 1913 [16], from which the Riberg constant
Ry could be derived in terms of fundamental constants

_é'me
~ 82h?

Ry (2.2)
and n understood as the principal quantum number. From the Bohr modet was also
possible to derive scaling laws for the atomic properties in terms of which were later
veri ed and extended by the full guantum mechanical treatment bSchredinger in 1926 [17].
Table 2.1 summarizes the scaling laws of the atomic properties for tlosv-- Rydberg states.
One property is the large orbital radius, another one the scaling laaf the polarizability
with n’. The consequence of the large polarizability is an enormous respois external
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elds and the ability to observe dipole-dipole interactions between atms on the m scale
for n  50. Combining this with the relatively long lifetimes compared to groundtate
transitions, Rydberg atoms are well suited for applications in cohent quantum gates [11].

property n-scaling
energy di erence of adjacenn states| n 3
binding energyW n 2
orbital radius hri n?
radiative lifetime n3
polarizability n’

Table 2.1.: Scaling laws for properties of the Rydberg states [18].

2.2. Atom light interaction

The simplest case to consider the interaction between atoms and ligh that of a two-level

atom driven by a coherent optical eld. This system has been exhatively studied (e.g.
[19, 20]), revealing a range of coherent e ects such as Rabi oscidas [21]. However, the
addition of a third level and a second light eld gives rise to a range obberent phenomena.

2.2.1. Two-level atoms

In order to handle the interaction between two electronic states@an atom and a light eld,
the level structure of an atom can be reduced to a simple two-lev&fstem (see gure 2.1).
The two di erent states are described by

! !

1 0
g = and je = : 2.3
ig 0 j 1 (2.3)

The corresponding Hamiltonian without light and an energy di erenceof ~ 4. between

the ground and the excited state can be written as

!
0 0

Ho= ~ : (2.4)
O ge
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------------- jei

I ge €g
ge *ge

jgi joi
(a) Energy diagram (b) Dynamics of the system

Figure 2.1.: Overview of the two-level scheme: a) Energy levels witbsonance frequency
ge Of the ground to the excited state, light frequency e and detuning ge.
b) Dynamic between the states involved is described by the e ectivRabi
frequency 8e and the decay rate 4.

With a classical light eld interaction turned on, the corresponding Fmiltonian has to be

modi ed to I I
0 O 0 dgeE (t
H=Hy+ Vy =~ + geE= (1)

0 4 dgeE (1) 0 (2:5)

whereasV, describes the atom light interaction anddye the dipole matrix element. The
light eld is expressed by a plane wavéE (t) = Eq(e"' ot +e "oet)=2,

The Rabi frequency
dgeEO

ge = ———! (2.6)
is introduced to simplify the Hamiltonian to
!
H _ O é! get + e il get ge=2 (27)
é' get + e il get ge:2 ge

The time evolution of the density matrix is described by the von Neunra equation

2= il 28)

which is an equivalent to the Schredinger equation.
The corresponding density matrix is de ned as

= 9 % (2.9)

eg ee
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The diagonal entries represent the population of the states. The-diagonal entries are
called the coherences.

Up to now we have neglected dissipative e ects. For this we have talé the Lindblad
operator L. The full dynamics is described by the Liouville-von Neumann equation

@ _

[
ot —[H; 1+ Lo(); (2.10)
whereas the Lindblad operator is de ned by [22]
1X h i h i
Lo =3 C.c/ + ¢G;cCc) (2.11)

J
The indexj denotes the di erent possible decay channels. The Lindblad opecaitdescribes
the coupling to the vacuum modes. Performing the calculation predeg for a two-level
system, where only one decay chann€l = = ¢4 jgihej is available, we see that the exited
state decays with the corresponding decay rate,y and the coherences decay witheq=2.
So we nally obtain !
Lp = e . o ; (2.12)

1
5 eg ee

2.2.2. Rotating wave approximation

In order to simplify the equations, the system is transformed in ad&me that is rotating
with the frequency of the light! 4.
We start from the Hamiltonian of equation (2.7):

O él get + e il get ge:2

é' get + e il get ge:2 ge

The transformation into a rotated frame is given by the unitary matix
!
1 0
U:= 0 eilat (2.13)

Hence the density matrix is transformed by

!
e il get
c=UYU = 9 ge (2.14)

i! get
egé o€ ee
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and leads to the transformed Hamilton operator in the rotating frene
!
U 0 1+e 2ot =2
@u__ 9. e (2.15)

He = UHU  i~UY .
" @t 1+edlot (=2 (lge  go

The rotating wave approximation implies that the fast light frequeng ! 4. averages to
zero over the interaction time and can thus be neglected. Togethwith the detuning
ge ge the equation can be simpli ed to

ge -
I

0 =
Haw = ~ e (2.16)

ge:2 ge
By calculating the eigenvalues of the Hamiltonian, which include the ato and the light
eld, the energies of the so-called dressed states yield

~ g —

This results in the oscillation frequency of the population (generalideRabi frequency) of
the two involved states:

q__
o - E1 B + 2 (2.18)

2.2.3. Three-level atoms

The addition of a third level jri and a second light eld! ¢ is a simple extension to the
two-level system but gives rise to a lot of new phenomena.

We are considering a three-level system now consisting of a growstdte jgi, an excited
state jei and a Rydberg statejri as shown in gure 2.2

01 01 01

1 0 0
joi = ?@0& el = E@l& jri = ?@0&; (2.19)
0 0 1

which is interacting with a light eld Ege(t) := Egge(€" *' +€ ! e')=2 coupling the ground
state to the excited state, and a second light el (t) := Eqe (€' =t +e e ')=2 coupling
the excited state to the Rydberg state. In analogy to equation (8) the Hamiltonian H

10
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jri jri

er - er er rg re

jel jel

ge ! ge 9 *

jgi jgi
(a) Energy domain (b) Time domain
Figure 2.2.: Overview over the three-level scheme: a) Energy levalsd resonance fre-
quencies g and ¢, light frequencies! 4 and ! ¢, and detunings 4. and

er- D) Dynamic between the involved states is described by the e ecgvRabi

frequencies j, and ¢ and the decay rates ¢, 1 and .

has the form 0 1
0 dgeEge(t) 0
H = % dgeEge(t) ~ ge derEer(t) g: (2-20)
0 der Eer(t) ~( ge + er)
The corresponding unitary matrix for the rotating frame transfemation is
0 1
1 0 0
U= R0 etot 0 X (2.21)
0 0 ei(!ge+!er)t

Applying the rotating wave approximation, we nd

0 1
0 42

0
Hawa = ~%D ge=2 ge er=2 g; (2.22)
0 er=2 ge er

where we used the de nitions ge = ! ge ge @nd o = g or. The transformed

11
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density matrix for a three-level system is given by

O il i(! | 1
99 ge€' ' gglieetlet
R~ % eg€ ! get ee ere“ ert g : (223)

g€ (Lgette)t @ ilert ’

If all decay channels are allowed the Lindblad operator follows as

0 , 1
O O §~gr
- g
Lp = re% 0 T 5 Ter
1_ 1_
2 gr 2 re r
0 ., 1
T 0 57or
L K
. 0 i (2.24)
1 1_ ~
2 or 7 Tte rr
0 1
~ 1_ 0
ee 2 ge
1 1 &
+ eg% 5 eg “ee 5 er
1
O E‘?e O

2.2.4. Autler-Townes splitting

In a three-level system (gure 2.3), where two levels are stronglgoupled due to a light
eld, the dressed state picture can be used to explain the obsebla phenomena. The
coupled system 'atom + driving photons' is called 'dressed atom'. In pacular as it will
be shown in the following, the Autler-Townes e ect is associated with level anticrossing
in the corresponding energy diagram.

Let us assume that the upper excitation fromei to jri is strongly coupled by a light eld

I er and the lower excitation light! 4¢ is weak and out of resonance for the upper transition
and hence can be neglected for the calculation of the dressed stathe uncoupled states

which interact are described by

je;N+1i atom in the exited statee in the presence oN + 1 photons! ¢,
jrNi atom in the Rydberg stater with N photons! ,.

The energy di erence between the two states follows as

E= Ee+(N +1)~! er E,+ N~! er — "’(! er er): ~ er- (2-25)

12
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| o jri 7Y jri
| 0
er - er er
e Y jei
ool _Y¥Zge
0
ge ! ge 9
jgi jgi
(a) Energy diagram (b) Dynamics of the system

Figure 2.3.: Overview over the considered three-level scheme: a)ekyy levels and reso-
nance frequencies 4. and ¢, light frequencies! 4 and! ¢, and detunings ge
and .. b) Dynamic between the involved states is described by the e ectv
Rabi frequencies 2, and ?

ge er-
At resonance (¢ = 0) the levels je;N +1i and jr; N i are degenerate. As a result of the
coupling, the two statesje; N + 1i and jr; N i repel each other and form a lower and upper
perturbed or dressed statéLi and jUi, whose energies are separated by a distanee?,
with

0 - P 737 (2.26)

er er er?

where ¢ is the e ective Rabi frequency (see gure 2.4).

The third state jg;N +1i (atom in the ground state g with N + 1 photons ! ) is not
a ected by the light coupling ! ¢,. The absorption spectrum of a probe eld! 4, which
would show a single transition at the frequency 4 in the absence of the coupling light
I or, becomes a doublet as soon as tkeeé r transition is driven by the eld ! ¢, since both
dressed states contain an admixture ¢&; N + 1i. This doublet is called the Autler-Townes
doublet. Only at resonance ¢, = 0 the Autler-Townes e ect shows a symmetric splitting.
With a detuning the frequency shift and the absorption strength ltanges. The energy

13
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eigenvalues of the dressed states result in

~ P——
EU = E( er T gr + gr) + ge (2-27)

N P
EL = E( er A+ )+ g (2.28)

The absorption strength for the probe transition depends on thprojection of the exited
state on the dressed state

T S | er
hejUijj= = 1 p—— 2.29
jhejuij == 5 > (2.29)
er er
|
T S | er _
jhejLij = = 1+ p— ; (2.30)
2 2 4+ 2
er er

which is plotted in gure 2.5. An energy diagram of the Autler-Townessplitting, where

the anticrossing of the eigenstates is visible, can be seen in gure.2Tdhe energy diagram
shows how the two components of the Autler-Townes doublet vanyith the detuning.

On resonancel(¢r = o ! o = 0), one gets two lines illustrated as red arrows with
frequencies

The spitting is therefore
E=~ o (2.32)
Far o resonance { ¢j er), One of the two lines has an energy close to g, the other

one is close to~( 4+ ). By evaluating the admixture of jei in each dressed state as
calculated in equation (2.29) and (2.30), one can determine the alpstion strength of both
components of the doublet. One nds that they are equal at resance, whereas the line
with an angular frequency close to 4. becomes the more intense one out of resonance.
Note that for large detuningj e/ er, the distance between each dressed state and its
corresponding asymptote is nothing but the ac Stark shift of levgel or jri due to its
coupling with the eld ! ¢ which is non-resonant.

To clearly see the Autler-Townes e ect, it is necessary to work in # strong coupling
regime, which means that the Rabi frequency ., has to be signi cantly larger than any
decay rate of the system. In that case the two lines of the doublean be resolved, even
on resonance.

14
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je;1i = jr; Oi

ge

jui

er

jLi”

jg; i

jg; 1

er 60

ge

(b) Dressing o resonance

shows the Autler-Townes doublet.

15

Figure 2.4.: Autler-Townes splitting (a) on resonance and (b) o remnance. On the left
hand side the gure shows the uncoupled energies. The center illieges the
dressed eigenstates corresponding to the absorption signal e tight, which
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—_ -

ihejLij2 \\\ 7 jhejuij?

er

Figure 2.5.: Projection of the exited state to the dressed stateshigh determines the ab-
sorptions strength on the lower transitiong $ e.

“o Ui
jrNi o .
je;N + 1i \\§\ |
ge | __ T T T T T 7 ~N. - =" | er
T AN |

ig:N +1i .
er( er = 0)

Figure 2.6.: Energy diagram (all frequencies have to be multiplied by) of the dressed
states showing the Autler-Townes doublet for variable detuning ¢axis) which
is probed by the lower transition (red arrows, y-direction). The pojection of
the exited state on the dressed states determines the absorpisostrength and
is indicated by the gray scale value. The dashed lines show the unckag
states.

16
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2.3. Optical properties

For the comparison between the simulations and the experimentahtd, the imaginary part

of the density matrix entry 4. can be connected to the absorption signal in the medium,
which will be shown in this section.

The electric eld E and the polarizationP can be expressed as real numbers by satisfying
the wave equation for a plane wave as

E = 3(Ege €"*'+Eg € (2.33)

P=1(P, e"wlsp, g (2.34)

The polarization can also be expressed by the atomic density the dipole operatord, the
density matrix , in the laboratory system and the density matrix in the rotated frame

as
P=ntr(d ) (2.35)
= N( eganlget gean Ueg) (2.36)
= N( o€ : getdge"’ geé! getdeg) (2.37)
= N( egdge € et 4 ( eglge) d'eet): (2.38)

By equating coe cients of equation (2.34) and (2.38) the amplitude bthe polarization
results in
Po=2n gqdge: (2.39)

In the slowly varying amplitude approximation [23] the amplitude of theelectric eld Ege(z)
and the amplitude of the polarization densityP, are connected by

@Be(2) _ . 'ge .
@Z =1 2 OCPOI (240)

Combining the polarization amplitude (2.39) with the partial di erential equation leads to

@%e(z) = ! gedegn
@Z oC

eq: (2.41)
Unfortunately the density matrix .4 depends on the electric eldEg. and hence on the

position z. From simulations it is known that the oscillation frequency of ¢y primarily
depends on the strongly driven second transition, which is not meahed yet, and the

17
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in uence of the lower transition E4 can be neglected. Only the amplitude of., decreases
monotonically over the integration distance by a factor less than tw By neglecting this,

the density matrix ¢4 can be regarded as independent af This approximation allows

integrating the partial di erential equation over a distance z = z,; zn

_ . gelegn 2

Ege;out Ege;in =l eg (2-42)
oC
=i C ¢ (2.43)
with a constant |
! n
c = ot Z. (2.44)
oC
Equation (2.43) can be rearranged to
Ege;out =iC eg+ Ege;in (2-45)
= C(iRe ¢g Im &) + Egein (2.46)
=(Egein CIm ¢) +i( CRe ¢): (2.47)
The outgoing and measured intensity 4¢ is proportional to jE4¢j? and yields
iEgeouti?= EZin (2EgeinC M ¢g) + (CIM ¢g)° + (CRe ¢g)°: (2.48)

In order to nd which of the terms contribute signi cantly, each term is evaluated with the
parameters used in the experiment:

deg =1:09 10 *Cm (see section 3.3)
z' 25mm (see section 3.4)
n' 1.3 10%cm 3 (see section 4.1)
Egein ' 12 10°V=m (see section 4.2)
ge = 780Nnm
| ge = 2C _ou4 1055t
ge
Re ' 01
Im ¢ " 01

18
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Hence the terms result in

Elein = 144 10" (V=m)? (2.49)
2EgeinCIm o' 7:7 10° (V=m)? (2.50)
(CIm )*" 1.0 10 (V=m)? (2.51)
(CRe ¢g)®' 1.0 10 (V=m)? (2.52)

Since the photodiode is ac coupled, the rst term does not contribbe to the observed
signal. Thus, the leading term by a factor of 8 is the second one which is proportional to
Im ¢g. This relation is used to compare the measurements with the simulatis. In order
to facilitate readability, the simulation of Im ¢4 will be called 'simulated absorption signal'
in the following.

19



3. Experimental setup

The experiment presented in this thesis realizes coherent Rydbegcitations in a thermal
gas of rubidium. The excitation of the Rydberg state is achieved in amective three-level
system coupled with two lasers as shown in gure 3.1. The energy ls/évolved are the
5S.,, 5Ps, and the 30S, state, in the following called ground statggi, excited statejei
and Rydberg statejri of the isotope®Rb. The ground state is coupled to the excited state
via a 780 nm cw laser and the upper transition to the Rydberg state driven by a 480 nm
pulsed laser.

! o jri 308, jri 308,
480 nm | 0

Tused ™ | | o &

] jei 5Py jei 5Py
L ___Y_ge
780 nm I 8e eg
Tow |
jOi 55 jgi 55
(a) Energy domain (b) Time domain

Figure 3.1.: Overview over the three-level scheme: a) Energy levalsd resonance fre-
quencies g and ¢, light frequencies! 4 and ! ¢, and detunings 4. and
er- D) Dynamic between the involved states is described by the e ecévRabi

frequencies g, and 9 and the decay rates ¢g and .

As the coherence time for the excited state is on the order of 10@noseconds [24], Rabi
frequencies of at least 100 MHz are required in order to observenerent excitations in a
thermal gas of rubidium. Due to the weak matrix element of the upperansition to the

20



3. Experimental setup

Rydberg state a high laser intensity is required to drive this transitin. Hence, a pulsed
laser setup for this excitation is used in the experiment.

To describe the dynamic, at rst the cw 780 nm laser drives the lowdransition. After
the steady state is reached, the blue 480 nm pulse is applied and thepplation of the
three-level system starts to oscillate. To observe the oscillatignthe transmission of the
780 nm light is measured.

3.1. DAVLL spectroscopy

The 780 nm laser light has to be stabilized to a transition of the grounit the excited state.
Thus, the laser is locked by a Doppler-free Dichroic Atomic Vapor Las Lock (DAVLL)
signal via saturation absorption spectroscopy of rubidium atoms ia magnetic eld.

PBS

PBS Rb Cell \

JATA'
AV

=='|\!
>

==H

Figure 3.2.: Optical setup for DAVLL spectroscopy for the 780 nm &er lock

The setup is shown in gure 3.2. The beam, which is stabilized, is split inttwo parts and
guided through the rubidium cell in almost counter-propagating diretion. When the atoms
interact with both beams, the probe and the pump laser, saturatioe ects are observable
in the absorption of the probe laser. So-called Lamb dips occur in tii¥oppler broadened
absorption spectrum exactly at the resonances. Furthermoreass-over resonance dips arise
(for details see [25]).

In order to lock the laser, a zero crossing slope is required. Hencdi&rential signal is
used: a magnetic eld applied parallel to the propagation direction athe laser splits the
atomic state due to the Zeeman shift as demonstrated in gure 3.3The resonances for
the " and components of the linearly polarized light are detuned by (B) due to the
Zeeman shift. The absorption of a single component is plotted over the frequency of the
laser in gure 3.4a. The dierence of the two shifted amplitudes prades a signal with a
steep slope, which is not sensitive to intensity uctuations of the las. This is the DAVLL
signal shown in gure 3.4b that is used to lock the laser. More detailsndhe DAVLL can
be found for example in [26].

21
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fee mee oms mee —— === TD= IIZ ___ 5Py, F0=4

5P3:2 FO=3
5P., F0=2
5P, F0=1

:
/

Figure 3.3.: The solid black lines show the level scheme of the groundtsttransitions of
8Rb in a magnetic eld. Dashed lines correspond to the levels without Zman
splitting. Each one of the orange and violet arrows has the same |éimgausing
the shifted absorption spectra for * and  light in the Dichroic Atomic Vapor
Laser Lock. The transition 58, F =2 ! 5P., F%= 3 is shown.

*-pol

1 & 53, F =3
=—= = 55, F =2
1 2 3 4 Mg

intensity in a.u
intensity in a.u.

frequency! 4¢ in a.u. frequency! 4¢ in a.u.

(a) Absorption of the 780 nm beam for a com- (b) DAVLL lock signal: di erence of the absorp-
ponent plotted against the frequency of the tion of the components plotted against the
780 nm laser. frequency of the 780 nm laser.

Figure 3.4.: Absorption and DAVLL lock signal
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3.2. EIT spectroscopy

The second laser, which is used as the seed laser for the Rydbeansition (480 nm), is

locked via EIT spectroscopy. In order to choose the frequencyd stabilize the laser for

the upper excitation, both lasers are overlapped inside a rubidium Itevhereas the blue

laser passes the cell twice in co- and counter-propagating directias shown in gure 3.5.

The in uence of the Doppler e ect is outlined in gure 3.6. Let us assme the 780 nm laser
is detuned from resonance by a certain detuninge. This detuning can be compensated
by a Doppler shift with a velocity v of an atom of

v= e (3.1)
ge

For a co-propagating con guration, the energy level of the Rydtrg state shifts in the same
direction and hence the total detuning increases as illustrated in e 3.6a. In counter-
propagating direction the velocity in respect to the Rydberg laser iseversed and the
frequency shift is overcompensated because the Doppler detunatepends on the transition
frequency ( er > 4e) as illustrated in gure 3.6b. Thus two signals arise, one of the co-
and one of the counter-propagating laser, which are plotted in ge 3.7a. The distance .
of the two resonances results in

Jed=2] ervi =2] ge;vji: (3.2)
ge
As for the DAVLL lock, a zero crossing signal is required to stabilizéné laser. Hence the
same scheme with the Zeeman shift (compare gure 3.3) is used t@eate a lock signal out
ofthe * and  components, which is shown in gure 3.7b. The signal can also be used
as frequency reference according to equation (3.2). More detals the EIT with DAVLL
can be found for example in [27].

= PBS
Bncicm mam))
| j/ [ | PDs
! I _/
Rb Cell =

Figure 3.5.: EIT spectroscopy for 480 nm laser lock
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Figure 3.6.: Doppler e ect leads to a detuning from resonance. Diagn shows co- and
counter-propagating Doppler shift for a velocity clasy < 0 with detuning
gev- IN €ach gure the left part shows the energy levels for an atom aest,
in the center the level shift of thegetransition is taken into account and on
the right the shift of the er-transition is added.

intensity in a.u.
intensity in a.u

frequency! ¢ in a.u. frequency! ¢ in a.u.

(a) EIT signal. Transmission of the 780 nm beam (b) EIT lock signal. Dierence of the transmis-
for a  component plotted against the fre- sion of the components plotted against the
guency of the 480 nm laser. frequency of the 480 nm laser.

Figure 3.7.: EIT and EIT lock signal
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3. Experimental setup

3.3. Pulsed laser setup

The experiment requires Rabi frequencies of at least a few hundglHz for both transitions
in the three-level system, so that coherent e ects can be obsed in respect to the decay

rate. The Rabi frequency
d12Eq

~

is proportional to the amplitude of the light eld E, and the corresponding dipole matrix
elementd;,, as introduced in section 2.2.2. The dipole matrix element for a trangin
between the excited and the Rydberg state (5B F = 3 to 30Sw,) is de; = 1:2 10 3! Cm
[11, 28] for®Rb. This is extremely small compared to the matrix element for the &msition
between the ground and the excited state (35 F = 2 t0 5Ps, F%=3) dge = 1:09 10 2Cm
[28, 29] for®*Rb and 8’Rb. Therefore we need a high intensity of the 480 nm laser. This is
realized with a pulsed laser setup that ampli es the 480 nm laser light.irGilar ampli cation
systems are described in [30] and [31].

Grating
g
=)
PBS
Faraday
PBS Rotator Dye Cell
Seed [
480 nm I
l =2 PBS
: Nd:YAG
Experiment 355 nm

Figure 3.8.: The pulsed laser setup consists of a dye cell pumped byregtiency tripled
pulsed YAG. The cell is seeded by the 480 nm beam in four pass corrgtion.

The pulsed laser setup is shown in gure 3.8. It contains a dye cell, whigs pumped by a
pulsed frequency-tripled YAG-laser of 355nm. The 480 nm seed lapasses the cell four
times. Due to the excited molecules of the dye, stimulated emission disato ampli cation
of the 480 nm seed light. Note that a four pass con guration with aisgle dye cell is the
highest number of passes with exactly the same trajectory podgibthe beam in the rst
and the second pass is speci ed by its polarization, in the third and ¢éfourth pass it is
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3. Experimental setup

distinguishable from the beam in the rst and the second pass by itsppagation direction.

The pump laser is a frequency tripled 1064 nm YAG-laser Continuum Rerlite 11 8050,

which provides a time-averaged power up to 7W of 355nm light. The |ses have a
repetition rate of 50 Hz and a full width at half maximum duration of alout 6 ns.

The dye cell is made out of glass, containing a bore for the dye andettbeam with a

diameter of 16 mm. The 480 nm seed laser is guided through the bore of the cell, imav

about the same diameter in order to reach a high e ciency. The dyeotution consists

of 0:2g Coumarin 102 dissolved in 1 ethanol. Ampli ed spontaneous emission results in
unfavorable uorescence light, which is suppressed by di ractiontaa grating (for more

details see [32]).

With this setup a pulse intensity of a few mJ per pulse can be reachedlhe pulse is

Fourier-limited. More details and speci cations of the system can b®und in [33].
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3. Experimental setup

3.4. Setup for Rydberg excitation

For the experiment presented in this thesis, a 5 mm glass cell (seaurg 3.9) is used. The
cell contains a reservoir of rubidium, which can be heated to increashe atomic density
inside as shown in gure 3.10. The cell itself is heated to a higher tempéure than the

reservoir in order to avoid condensation of rubidium atoms on the gace. The optical
density and temperature of the rubidium vapor is determined by alogption spectroscopy.

Figure 3.9.: Picture of a glass cell similar to the one used in the experinmhe The cell
contains a reservoir lled with rubidium.

density [cm 3]

T[C
108O 25 50 75 100 125 150 175 -

Figure 3.10.: Density of atomic rubidium at vapor pressure [28].

Inside the cell, the 780 nm beam and the 480 nm pulse are overlappedalmost counter-
propagating con guration ( = 171.5 ; setup see gure 3.11). With a full counter-
propagating setup the overlap at the surface of the cell leads todart e ect (observed
signal dropping to zero). Nevertheless the angle must not be largeorder to repress the
Doppler broadening, which will be examined in section 5.2.3. The overfgipg range of the
two beams is approximately z =2:5mm.
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3. Experimental setup

PH
480 nm AN A \
pulsges r) Y Y,
PH

780 nm /\ /\ | D
CW(gs ¢ \/ \ I

Rb cell 2f APD

Block PD

Figure 3.11.: Optical setup for the measurement. The 480 nm and(di@m beams are over-
lapped inside the cell and both transmissions are recorded by phdiodes.

To observe Rabi oscillations, it is important to have a spatially constd intensity pro le

inside the interaction volume. Hence the 480 nm pulse? ('

1300 m) is trimmed at

an aperture (? = 575 m). This wavefront is imaged with two lenses into the rubidium

cell (? * 375 m) as captured in gure 3.12. Moreover, the 780 nm probe beam ine¢h
overlapping volume (k€ ? = 340 m) is imaged with a 2f imaging onto an aperture
(? =150 m) directly in front of the probe APD to cut out the inner part as illustrated

in gure 3.13.

200
5 o
>
200
200 0 200 °
x[ m]

(a) Beam pro le for the 480 nm laser inside the cell.

200 — :

200% |

0 02 04 06 08 1
normalized intensity

(b) Intensity pro le through x =0.

Figure 3.12.: Beam characteristics of the 480 nm light inside the cell, sting an almost

rectangular intensity pro le with a diameter of
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X[ m] normalized intensity
(a) Beam pro le for the 780 nm laser inside the cell. (b) Intensity pro le through x =0.

Figure 3.13.: Beam characteristics of the 780 nm light inside the cell Wia =2 diameter
of 340 m.

In order to correlate the occurring oscillations of the lower transibn to the pulse intensity
the temporal pulse shape has to be known. After passing the cdlletpulse is scattered on
a white surface to reduce its intensity. The stray light is detectedroa photodiode (EOT
ET-2000) to record the temporal pulse shape. A comparison ofdlletection characteristics
of di erent photodiodes is shown in gure 3.14. The experimental da is taken with an
oscilloscope (LeCroy WaveSurfer 104MXs) at a sampling rate of 5&S

-
T

—— ET-4000
—— ET-2000
—APD

normalized intensity
o
(&)
T

o

time [ns]

Figure 3.14.: Comparison of the detection characteristics of di enephotodiodes. The ET-
4000 shows to most realistic pulse shape since the electrical cheeastics suit
well to the requirements. For the ET-2000 the falling slope is too slowhe
APD su ers from AC coupling.
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4. Experimental results

For the rst time it was possible to show Rabi oscillations to a Rydbergstate on the
gigahertz scale. The data presented here is in good agreement vitik three-level system
introduced in section 2.2.3. The model to describe the experiment igrgrisingly simple
in respect to the complex level structure of an atom. Even thougit is simple, the data
shows a range of interesting features which will be discussed in deta

Three related measurements are performed building one data set:

absorption spectrum (scan of 4¢) at low intensity (lge < | gesar) to determine the
optical density, the atomic density and the temperature inside theell with disabled
pulsed laser [ = 0)

blue intensity scan (¢) on resonance (e = 0, ¢ = 0) with constant intensity
(I ge = const) for the lower transition

blue frequency scan () at xed pulse intensity (I, = const) with the red laser being
on resonance (3 = 0) with constant intensity (| 4 = const)

At rst, an overview over the measured data is given. The detailedigcussion will follow
in chapter 5.

4.1. Experimental parameters

The optical density, the atomic density and the temperature insidéhe cell are three basic
parameters of the experiment. In order to determine these valiean absorption spec-
trum is taken by the probe laser at low intensity (ge < | gesar). A t function containing

the required parameters is tted to the signal as shown in gure 4.1 On resonance the
signal drops to zero because of the high optical density inside thentn glass cell. The
values extracted from the t are a temperature ofT = 120 C, an atomic density of
N = 4:5 10%cm 3 and an optical density of 21 for the transition ®Rb 55, F = 2
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4. Experimental results

to 5P, which is later used to excite the atoms from the ground state to thintermediate
state. For the transition to the Rydberg state the optical densy is low due to the low
dipole matrix element of the Rydberg transition. Hence e ects like dae propagation or
self-induced transparency can be neglected.

The e ective density of atoms which are involved in the excitation s@me is less than the
total density n,, due to the natural isotope ratio of rubidium €°Rb: 72%). As a second
loss the hyper ne ratio of the driven ground state transition®®Rb 5S-, F = 2 to 5P, (see
section 5) with ratio of 5=12 reduces the addressable atoms. Hence the e ective density
has come ton = 1:3 102cm 2 in the given setup.

intensity

85Rb SSRb
5S., 5S4,
F=3 F=2

3 2 1 0O
detuning 4 [GHZ]

Figure 4.1.: Absorption spectrum of the B-line to determine the optical density and tem-
perature inside the cell. The red signal shows the measured datagtblack
line the t function used to extract the parameters. 4 = 0 marks the center
of the Doppler valley of the transition®Rb 5S-, F = 2 to 5P, used in the
experiment.
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4. Experimental results

4.2. Rabi oscillations

As described in section 3.4, the oscillations in the absorption appeas soon as the upper
excitation is driven by the pulsed laser. In gure 4.2 Rabi oscillationsra shown from a
single shot experiment. In the steady statet 0) the observed signal on the APD is zero
since the photodiode is ac coupled. At= 0 the blue pulse arrives and oscillations appear
in the probe eld, due to the changing coherences. The peak pulsgansity is measured as
ler ' 22 MW=cn?. Already in this single event it can be seen that the oscillation frequen
depends on the temporal evolution of the blue intensity. During th@ulse, the oscillation
frequency starts slow at the beginning, increases and slows dovwgam. After the pulse at
about 55 ns, the system is not in equilibrium anymore and damped oscillationsh the
relaxation into the steady state. The frequency of this oscillationiges access to the Rabi
frequency of the lower transition (g ' 2 200MHz). With the corresponding dipole
matrix element (see section 3.3) an electric eld dEg =1:2 10*V=m and an intensity of
lge =2:0 10°W=m? are calculated for this transition.

intensity

time [ns]

Figure 4.2.: Single shot data: the blue line shows the pulse for the Ryatly excitation and
the red line the emerging Rabi oscillations of the probe beam (amplited are
not to scale). After the pulse the system is evolving back into stegdstate.
The falling slope of the pulse is actually stepper than shown here. Thsdue
to the characteristics of the photodiode used here (see gure 3,1ET-2000).
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4. Experimental results

4.2.1. Rabi oscillations for di erent pulse intensities

By changing the intensity of the pulsd ¢, the e ective Rabi oscillation changes. According
to the theory for both transitions on resonance (e =0, ¢ =0)

q

o= %t % [33 (4.1)
de Eo.

or = er~0,er (4.2)
1

ler = 5C oEger; (4.3)

wherelg, is the intensity of the upper transition, de, the dipole matrix element andEq.er
the amplitude of the electric eld, the e ective Rabi frequency 2 shows a square root like
behavior

q
0 —
er —

zetconst 12 (4.4)

The experimental and simulated data are presented in gure 4.3 wiicare in good agree-
ment. The pulse intensity increases from left to right and thereferthe oscillation frequency
increases likewise.

4.2.2. Rabi oscillations for di erent pulse detunings

For the third measurement the peak pulse intensity of the upper las to the Rydberg state
is held constant (¢, ' 22 MW=cm?), while its detuning ¢ is scanned. The lower transition
is on resonance @ = 0). The experimental data and the corresponding simulation can
be seen in gure 4.4. For a two-level sgstem one would expect fastascillations out
of resonance j(¢;j > 0) because of & = = 2 + 2 (see equation 2.26). However, the
experiment and simulation show a decreasing oscillation frequency lwihcreasing detuning
instead.

In order to explain this behavior a detailed discussion will be shown in ¢hnext chapter.
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Figure 4.3.: Experimental data (upper picture) of an intensity scam,, of the upper tran-
sition with a peak pulse intensity of up to 22 MW=cm?. For the simulation

(lower picture) the peak Rabi frequency is chosen to be,, =2 2:2GHz to
best t the experiment.
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time [ns]
rel. amplitude [%)]

2 1.5 1 0:5 0 a5
detuning of pulse ¢ [2 GHZz]

time [ns]

Im ¢

1:5 1 05 0 a5

detuning of pulse ¢ [2 GHZ]

1

Figure 4.4.: Experimental data (upper picture) of a detuning scane, with a peak pulse
intensity of I, ' 22 MW=cm? and the corresponding simulation (lower pic-

ture) with a peak Rabi frequency of ¢ =2 2GHz chosen to best t the
experiment.
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5. Simulation and discussion

The simple model of a three-level system (see section 2.2.3) is cdpalf describing the
features of this experiment. Even though rubidium is used, it turn®ut that the whole
level scheme can be reduced to a ground state, an excited statel @ Rydberg state which
will be shown in the next paragraph. This basic model can be simulatezsily and allows
for a separated analysis of the occurring e ects in order to give antuitive picture for the

interpretation of the experimental data.

So why can we simplify the level scheme? For rubidium as an alkali atorhet lower
excitation from the ground to the excited state can be realized byhe D, transition 5S.,

to 5P, or the D; line 5S, to 5P.-, which are well separated in rubidium with  7:1 THz.

The ground state transitions including the hyper ne structure ae illustrated in appendix
A. The hyper ne splitting of the ground state is  3:0 GHz for 8®Rb and  6:8 GHz for
8’Rb which both exceed the Doppler broadening af = 120 C of gerwrn  0:5GHz and
hence can be resolved. The ground state used in the experiment®®b 5S-, F = 2. The

addressable hyper ne levels from the ground state & = 2 to the excited state cannot be
resolved since the frequency range frofARb 5P., F°=1 to F%= 3 is only 93 MHz. They
are treated as one due to the Doppler broadening and the bandwidbf the upper excitation
which is 2 GHz caused by the high intensities usedd, ' 22 MW=cm? 2 . ' 2GHz).
Also the transitions of the isotope®’Rb are well separated fronf°Rb and thus do not
contribute. The Rydberg state 308, is also well separated from other states whereas the
hyper ne structure is not resolved. This allows for reducing the sgem to a simple three-
level model. The coupling between the states is given by two light eldsthe so-called
probe laser for the lower transition and the coupling laser for the yer transition.

Here a short summary of the simulation model is given. The density i is de ned by

0 1
0® el o)

0= B ) ) «®X: (5.1)
o) ) @
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5. Simulation and discussion

The dynamic of the system is described by the Liouville-von Neumanmj@ation

Q= I 1+ LeO) 52)
and the corresponding Hamilton operator for this system in the rating wave approxima-
tion is given by 0

0 2 4(t) 0
HO= @) ool ge 1 all) K (5.3)
0 % er(t) ge er

The Lindblad operator which includes two decay channels, and 4 results in

eg ee(t) % eg ge(t) % re gr(t)
Lo(t) = % eg eg(t) eg ee(t) T oren (t) % eg er(t) % re er(t)g : (5.4)
% re rg (t) % eg re () % re re(t) re r (t)

The initial steady state 4 =const, ¢ =0 is calculated to be

0 ) . 1
1 ge 2 ge(ge | re=2)
4(§e+ _%g +2 )56 42+ gzq+2 Ze
0) = 2 ge(getl re=2 ge Ox . 55
©) 4 5.+ 2442 5 4%+ 2442 5 (5.5)
0 0 0

The ordinary di erential equation (5.2) was solved numerically with a Ringe-Kutta method

(RK4) in Mathematica and to speed up the calculations in a nativdava program (more

details can be found in appendix B.1). An integration time step of = 0:1ns is chosen
to sample the results su ciently accurate. The simulation parametes are the following:

decay rater ! e re 10 kHz
decay ratee! ¢ eg 6 MHz
Rabi frequency g$ e ge 2 200 MHz
time step t 0.1 ns
temperature T 120 C
crossing angle of beams 171.5

The dynamics of the system are driven by the time dependent pulsetensity and hence

the Rabi frequency ¢ (t). For a thermal gas, the Doppler velocities have to be taken into
account. Hence, the simulation is performed foN = 1000 atoms where the velocity of
each atom has a random value according to the Maxwell-Boltzmann ttibution.
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5. Simulation and discussion

For an experimental setu pwhere both beams are in full countergpagation direction
( =180 ), only one dimension of the velocity distribution is required:

r

2

PV = 3 7P T (5.6)
The Doppler detuning  is calculated by
Vv
v="1o— 5.7
o= (5.7)
ge = ge+ vige (5-8)
& et e (5.9
Note that the frequency shift for both light elds is not equal:
e - 88 1:63 (5.10)
v;ge er
The nal density matrix is calculated by
1 X
= = N (5.11)
N
n=1

where each , is the density matrix of the n-th simulation with a random velocity accord-
ing to its probability (see equation 5.6). This formula, which is easily impteented in a
simulation, converges to the analytical result
Z
= p(v) (v)dv; (5.12)

\'%

wherep(v) is the Maxwell-Boltzmann distribution and (v) the density matrix for a veloc-
ity v.

If the setup is neither co- nor counter-propagating, it is necesyato use a two dimensional
velocity distribution, which is a simple extension to the given model. Inhe real experiment
the crossing angle is = 171:5 . The small di erence to the counter-propagating con gu-
ration is almost negligible. The angular dependence will be discussed @ttson 5.2.3.
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5.1. Rabi oscillations for di erent pulse intensities

As described in section 4.2.1, the simulation for di erent pulse intensés is in good agree-
ment with the experiment (see gure 4.3). Whereas in the experimethe only accessible
property is the absorption, the simulation also gives access to thepulation of the di er-
ent states (49, ee @and ) which are shown in gure 5.1. A peak pulse Rabi frequency of
er - 2 2:2GHz ts best the experimental data with a measured peak pulse iabsity of
22 MW=cn?. The corresponding Rabi frequency calculated with the dipole magr

Ier
element of section 3.3 for the given intensitye, would result in ¢ =2 2:3GHz. The
di erence between the calculated and the simulated Rabi frequepnds in the tolerance of
an estimated error of the intensity (¢r: 10%) and the uncertainty of choosing the Rabi
frequency in the simulation ( : 2 150MHz) best tting to the experimental data.
During one single pulse, six full Rabi cycles can be observed ( gurel®). A peak e ective
Rabi frequency of about 2 ' 2 2:27 GHz is achieved, extracted from the oscillations of
the simulation. The enhancement of the Rabi frequency?, or =2 T70MHz is caused
by the Rabi frequency of the lower transition according to equatio(4.1) 2, = P m
and the Doppler detuning with respect to equation (2.26) %, =~ 2 + 2. Both e ects
are on the 2 10MHz scale.

The simulation of the excited state ( gure 5.1b) shows a steady s (t = 0) population
of 24 %. At zero temperature, the state would be populated by 50%s g ge- The
reduced population is due to the Doppler distribution afl =120 C ( gepwn = 513 MH2z).
For the Rydberg state a population of 35% ( gure 5.1c) can be achied. In order to get
signi cantly higher Rydberg populations the transition between theground and the excited
state has to be pulsed, too. As a proof of principle, a simulation is calated in which both
excitation pulses arrive at the same time, have the same Rabi fregncy ge(t) = o (1)
and have a e pulse width of Q33 ns. With this simple excitation scheme a Rydberg
population of well over 90 % can be achieved even in the thermal re@r(see gure 5.2).

5.2. Rabi oscillations for di erent pulse detunings

The experimental data for di erent pulse detunings as presenteith section 4.2.2 and g-
ure 4.4 shows the e ect of a decreasing oscillation frequency with reasing detuningj ¢j.
In order to understand this behavior, it is instructive to further smplify the system. In
a rst approach the pulse shape is assumed to be rectangular withcanstant Rabi fre-
guency. A corresponding simulated absorption pro le is plotted in gre 5.3. To make this
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time [ns]
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Figure 5.1.: Simulated population of each of the three levels.
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(c) population of the Rydberg state

x-axis: pulse peak Rabi frequency ¢ in [2 GHz]
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Figure 5.2.: Simulated population of the Rydberg state in a setup wherboth transitions
are driven simultaneously with a € pulse width of Q33 ns.
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Figure 5.3.: Simulated absorption spectrum for a rectangular pulséape with a constant
Rabi frequency of ¢ =2 1:.3GHz.
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5. Simulation and discussion

simulation comparable to the previous simulations the Rabi frequendor this simulation

o =2 1:3GHz is chosen such that the same number of oscillations occur in thst
4:5ns, which is the plotted time range of most gures. The in uence ofhe pulse shape
will be examined in detail in section 5.2.2. First the Autler-Townes splithg in combi-
nation with the thermal velocity distribution is discussed which builds he framework for
explaining the experimental data.

5.2.1. Autler-Townes splitting

The main properties of the experiment are described by an AutlereWnes splitting intro-
duced in 2.2.4, involving the two upper states which is caused by theengly driven upper
transition with the pulsed laser. This coupled system is probed by thew probe laser
driving the lower transition. Since the Autler-Townes splitting and the Doppler shift have
about the same magnitude, none of them dominates the system atiet interplay of each
other has to be examined.
The nal density matrix of a simulation as given in equation (5.12) is thesum over all veloc-
ity dependent density matrices multiplied by their weight factor of the Maxwell-Boltzmann
distribution. Hence a look at the dierent velocity classes is helpfuldr explaining the
results of the system obtained. As a rst velocity class we assuméoms at rest (v = 0)
so that no additional Doppler detuning occurs (ge.v = er-v = 0). The scan range for the
detuning ¢ we choose is within 2 2GHz. It is therefore symmetric with respect to
er = 0 and indicated by the blue line in the energy diagram in gure 5.4. The m@ticross-
ing point of the Autler-Townes splitting is exactly in the center of theabsorption pro le
er = 0. For this velocity class the absolute absorption signal ( gure 5)is weak because
the levels of the dressed states cannot be crossed due to thei@nssing. At the center
( ge = 0) the two modes of the Autler-Townes doublet interfere constrctively as they have
a symmetric energy splitting of ~ ¢=2 at this frequency.
As a next velocity class we select a speed o400 s (gure 5.6). The Doppler shift
causes a detuning ofge,y, = 2 513MHz and ¢.., =2 829MHz. That means the
probe range in the energy diagram has shifted to the right and sliditto the bottom due
to the Doppler detuning (see gure 5.4). Here, one of the resonzes of the dressed state is
crossed and we observe a strong signal there (see gure 5.6) #mel oscillation slows down
accordingto 9 =" 2 + 2. The absorption spectrum itself is not symmetric anymore
but the sum over all velocities will end up being symmetric, since the abrption pro les
of velocitiesv and v are just ipped along the center of the frequency axise, = 0. In all
plots the two modes arising from the Autler-Townes doublet are visib.
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Figure 5.4.: Autler-Townes splitting for o =2  1:3GHz. Frequency scans fov = 0 m=s
andv =400 m=s are highlighted in blue.

At the experimental temperature of T = 120 C the standard deviation of the velocity
distribution is r

v = kB—T =196 m=s. (5.13)
m

A variety of velocity classes is shown in gure 5.7, where the color cedndicates the
simulated absorption strength multiplied by its weight factor accorthg to the Maxwell-
Boltzmann distribution (equation 5.6). Atoms at rest or with low velodty are far away
from the resonances of the split system and hence have a low sigal#though their weight
factor is high. At high velocities (e.g. 400 ms) the signal is also low although a resonance
is crossed because its weight factor has dropped to almost zeroenkle the velocities in
between dominate the total absorption: at velocities of arounfl/j = 100 m=s a resonance
Is almost inside the scan range and the corresponding weight factsrstill high enough to
give a strong signal. If we nally sum up all velocity classes, we end uptiv a simulated
absorption pro le ( gure 5.3) close to the observed experimentadignal ( gure 4.4).
To conclude and explain the nal result it can be said that the Autlerfownes doublet is
probed by the di erent velocity classes that exist due to the Doppledistribution. The
oscillations slow down with increasing scan detuningge since both resonance frequencies
of the Autler-Townes doubled are outside or at the edge of the staange for the relevant
velocity classes. In other words, the highest detuning from the Aler-Townes doublet is
reached at , = 0 and thus the oscillations are the fastest there.
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Figure 5.5.: Simulated absorption spectrum for the velocity class= 0 with a rectangular
pulse shape of o, =2 1:3GHz.
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Figure 5.6.: Simulated absorption spectrum for the velocity class = 400 m=s with a

rectangular pulse shape with ¢, =2 1:3 GHz. The detunings resulting from
velocities are gey = 2 513MHz and ¢, =2 829 MHz.

44



5. Simulation and discussion

absorption for v=0m=s absorption forv= 10m~s
0 0
1r 4 1 8
2 4 2 8
3r 4 3r =
4 |4 |
| | | | | |
2 1 0 1 2 2 1 0 1 2
absorption forv= 50 m=s absorption for v= 100 m=s
0 0
1r 4 1 8
2 4 2 8
3r 4 3r =
4 | 4] .
| | | | | |
2 1 0 1 2 2 1 0 1 2
absorption forv= 200 mes absorption forv= 400 mes
0 T T T 0 T T T
1) 11 3
AS 4 2 -
3 4 3 -
41 4 4 -
| | | | | |
2 1 0 1 2 2 1 0 1 2

Figure 5.7.: Simulated absorption spectrum for di erent velocity clases weighted with the
corresponding Maxwell-Boltzmann distribution factor forT = 120 C.
x-axis: ¢ [2 GHz], y-axis: time [ns], color code: Im¢g in a.u.
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5. Simulation and discussion

5.2.2. Pulse shape dependence

Up to now we used a rectangular pulse shape for instructional puspe. With the given
experimental setup only a Gaussian-like pulse shape is accessible.e Ttansition from a
rectangular pulse shape to the real one will explain the di erence tife previous simulations
to the experimental data. Mainly two aspects have to be taken intaccount:

as the pulse intensity is varying temporally, the Rabi frequency cimges accordingly

o : : P——s
the Autler-Townes splitting depends on the pulse intensity E = ~ 2.+ 2 (see

equation 2.32) and thus the splitting changes during the interaction

In order to visualize these e ects, the peak Rabi frequency of ¢hGaussian-like pulse
( e« =2 2GHz) is divided into six equally spaced intensities as shown in gure 5.8or
low Rabi frequencies (¢ge < 2 1GHz) the resonances of the Autler-Townes doublet are
probed within the scan range. The oscillations are slow due to the lowaBi frequency and
the low detunings from the Autler-Townes levels. With an increased d&di frequency the
oscillations frequency increases due to the Rabi frequency itsetfdadue to the increased
splitting causing a higher detuning.

One has to be aware that the nal dynamics for a Gaussian pulse is tha sum over all
shown intensities. Instead the dynamic starts at a low intensity, ress up to the peak in-
tensity and returns to a low one again, according to the pulse shape

The di erence between a rectangular and a Gaussian pulse shapgdther with two inter-
mediate states is shown in gure 5.9. Note that the pulse is not shown its full length
but the rst 4 :5ns are displayed as for the experimental data. The pulse intensgidor
the non-Gaussian pulses are chosen such that tat 4:5ns the same oscillatory phase is
achieved as for the Gaussian pulse in order to be comparable to eather. Due to the
averaging e ect of the di erent intensities during the pulse only theslow mode remains,
the faster one vanishes. The nal simulation reproduces the expmental data (compare
gure 4.4).
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5. Simulation and discussion

5.2.3. Angular dependence

The visibility of the oscillations depends on the crossing angle betwedmmth lasers as
illustrated in gure 5.10. In a co- or counter-propagating setup tb absolute value of
the velocity is the same for each atom in respect to the lasers. A pmpagating setup
has a weak visibility since a Doppler shift causes a detuning of each nsiion in the
same direction and thus increases the total detuning. For a pemdicular setup both
detunings are independent of each other and hence the signal s out. In contrast, a
counter-propagating setup has the best visibility since both detuimgs are connected to each
other as for the co-propagating setup, but instead of increasirthe detuning it is partly
compensated by the opposite laser. With an angle of 181 as used in the experiment
(see section 3.4) a high visibility is obtained.
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Figure 5.10.: Simulated absorption spectrum for di erent crossingngles of the beams.
X-axis: ¢ [2 GHz], y-axis: time [ns], color code: Im¢q range: 0:17
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5. Simulation and discussion

5.2.4. Temperature dependence

In order to change the atomic density inside the sample the tempéuae of the rubidium cell
can be changed as presented in section 3.4. But a change in tempamalso has an impact
on the Doppler velocity distribution and hence on the absorption sigih as simulated in

gure 5.11. The standard deviation for the Doppler distribution is gien in equation (5.13)

v ! T. At room temperature the relative temperature change on the Ken scale is
small and causes only a small change in the Doppler prole. Hence akhmo e ects of
heating or cooling the system can be seen at this temperature. NMahat at T = OK the
only remaining velocity class isy = 0 and hence no averaging e ect due to the Doppler
distribution takes place.
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Figure 5.11.: Simulated absorption spectrum for di erent temperaires.
x-axis: ¢ [2 GHz], y-axis: time [ns], color code: Im¢q range: 0:16
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5. Simulation and discussion

5.3. Further development

The long-term goal of the work presented is to build quantum devisausing the principle of
fast coherent dynamics shown in this thesis even at room tempeua¢. In order to realize
single photon sources [34] and quantum gates [11], the setup of teigperiment has to
be adapted in a way that the Rydberg-Rydberg interaction emergeso that the Rydberg
blockade e ect [35] dominates.

Up to now an e ective atomic density of 1:3 10*cm 2 is used in the experiment (see
section 4.1). The density of atoms which can be excited to the Rydtgestate is less due to
the maximum Rydberg population reached (35 %) in this excitation seme. So roughly a
Rydberg density of 5 10t cm 3 is reached in the presented experiment.

In order to see the Rydberg blockade, the addressable atoms mhave at most a dis-
tance less than the blockade radius here coarsely de ned by theduency shift due to the
Rydberg-Rydberg interaction in range of the bandwidth of the exgriment ( 2 GHz, see
section 5).

The frequency shift of rubidium-rubidium molecules is extracted fra calculations for these
molecules of the 35S, 45S and 55S states [36] and extrapolatedrasgnted in gure 5.12.
To determine the average distance to the next neighbor a simulationas performed for
a non-interaction ideal gas where the atoms were randomly placedanvolume according
to the density given (see gure 5.13). In a simple cubic lattice one wiwbhave a distance
to the next neighbor ofd = *° 1=, where is the atomic density. With respect to the
simulation the average next neighbor distance is 40 % less than in a aulattice.

In the experiment, the average distance of two neighboring Rydigeatoms is according
to the e ective density about 075 m. The blockade radius for a level shift of 2 GHz for
the 30S state is about & m, which is already close to the average distance to the next
neighboring atom.

In order to enter the blockaded regime one possibility is to increasket principal quantum
number n. A state above 45S has a blockade radius greater than th which should be
su cient to see the blockade. One has to nd a rubidium Rydberg stge in which the
corresponding molecular state of the Rydberg atoms is well sepi@@ from any other state
in order to see the blockade. Another possibility to reach higher intaction is to increase
the temperature and hence the atomic density leading to a smaller thace between the
atoms. To cut the distance between two atoms to half an increaseensity by a factor of 2
is required. This can be achieved by heating the sample by 40 K. Heteetmolecular states
also have to t so that the blockade can be seen. The indicator to bie the blockaded
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5. Simulation and discussion

regime is an asymmetrical absorption pro le in respect to the detung ., and an increased
Rabi frequency 2 due to a collective enhancement [37].
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Figure 5.12.: Distance between two rubidium atoms for a level shift tdfe Rydberg state of
1 GHz (red) and 2 GHz (blue) [36]. The dashed lines show the propontigality
n=® according to theory.
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Figure 5.13.: Average distance to thaé-th neighbor simulated for an ideal gas. The sim-
ple cubic lattice has the same next neighbor distance as the averdderth
neighbor of a random sample.
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6. Summary and Outlook

The results presented in this thesis give certainty that fully coher¢ dynamic processes
involving Rydberg states can be realized in a cell of rubidium vapor evabove room tem-
perature. In the experiment a bandwidth-limited pulsed excitation wh a pulse duration
of 4ns was used to couple to the Rydberg state. During the pulse, si¥lfRabi cycles
to the Rydberg state could be observed resulting in a peak Rabi frgency of 2:3 GHz.
Due to this high Rabi frequency the thermal gas inside the cell carelregarded as frozen
on the relevant timescale.

Despite the complicated level structure of rubidium it has been shawthat a simple three-
level system is capable of describing the dynamics observed in th@exment: due to the
bandwidth of the experiment ( 2 GHz) and the transitions chosen the level scheme of
rubidium can be reduced to the transition from the ground state 5S F = 2 to the excited
state 5P, and from there to the Rydberg state 30S. The hyper ne levels of the excited
state are close together ( 100 MHz) and thus are treated as one as they are not resolved.
For the experiment the lower transition is driven by a cw probe laser780 nm) of which
the transmission is measured. The upper transition is driven by a pad laser (480 nm)
to reach the high intensities required to compensate for the wealkpdle matrix element of
this Rydberg transition. High Rabi frequencies on the gigahertz rge are required due to
the coherence time of up to a couple of nanoseconds.

At rst the dependency of Rabi oscillations on the intensityl ¢, of the upper transition was
studied. A square root like behavior o / P W was observed as expected for a
three-level system with both transitions resonantly driven. Fufiermore the system was
examined for di erent detunings ¢, of the upper transition. The experimental data showed
the fastest oscillations for both transitions on resonance. With aimcreasing detuningj «j
the oscillations became slower which is di erent from a two-level sy@nh where the Rabi
frequency increases with the detuning, = 2, + 2.

In order to get an insight into the physical mechanisms the threeatel atom was simulated
even in a more simpli ed system: the pulse shape was assumed to betaegular. With
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6. Summary and Outlook

that the dominating e ect describing the dynamic of the experiment an Autler-Townes
splitting together with the in uence of the Doppler shift of the atoms, could be studied in
detail. It turns out that atoms with a velocity of jvj' 100 mes have the highest impact on
the absorption signal. Signi cantly faster atoms are rare due to & Doppler distribution
and atoms at rest or of low velocities are high in numbers but out of senance due to the
anticrossing of the Autler-Townes splitting.

Furthermore the in uence of the pulse shape was examined. For aatangular pulse the
Autler-Townes spitting is constant whereas for a Gaussian-like palsas used in the exper-
iment the splitting changes during the interaction time. Thus the fa®r oscillatory mode
out of the two from the Autler-Townes doubled washes out and onlhe slow one remains.
Additionally the dependence of the crossing angle of the two laserdms was examined.
The best signal can be observed in counter-propagating directismce the velocities of the
atoms have the lowest impact here. Within a deviation angle of 15 the visibility almost
does not change. For experimental reasons one laser was slightitated by 85 to avoid
an overlap at the cell surface with the second laser.

Another parameter of the system is the temperature. Heating arooling has an in uence
on the Doppler distribution and hence on the absorption signal. Fohe experiment at a
temperature of T ' 120 C a change of 100K has almost no in uence on the absorption
signal which is due to the small relative change of the Doppler distrition ,/ = T.

As a last result the Rydberg blockade radius of the current expergnt was estimated and
the average distance between two neighboring atoms simulated.tltrns out that the dis-
tance between atoms in the Rydberg state is already close to the dberg blockade radius.
In order to estimate the change required to enter the blockade@gime the dependency of
the atomic density and the distance of two neighboring atoms wasustied. Moreover the
level shift for di erent principal quantum number n was examined. The rubidium molec-
ular states show a non-trivial behavior in the blockade distance. Be of the states mix
depending on the Rydberg state which can suppress the blockadeirther studies will be
required.

The nal step after the blockaded regime will be reached is to dease the cell volume to
a size where only one excitation can exist in one cell [8]. Here the intetian of the atoms
and the wall of the cell is an issue. It has been shown that certainipcipal quantum

numbersn cause only weak wall-induced e ects and hence are candidates farse in these
cells [38]. Finding an appropriate Rydberg state is crucial to satisfyllaconstrains for the

wall interaction and the Rydberg blockade radius including the moletar states.
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6. Summary and Outlook

This thesis provides measurements that suggest a thermal gasrobidium as a system
for the physical realization of a quantum system. The basic requireents, the coherent
dynamics, could be observed in the experiment. This builds the baswr fa further devel-
opment of di erent quantum devices in a thermal gas of rubidium asuantum gates [11],
single photon emitters [34] or absorbers [39].

The next steps for a further development of this new approach eusketched and with cer-
tainty there will be a lot of interesting physics to investigate in orderto nally realize a

scalable quantum device.
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A. Level scheme and D4/D o absorption
spectrum of Rubidium
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Figure A.1.: Ground state transitions of rubidium®Rb and &Rb [40].
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Figure A.3.: Absorption spectrum of D line (5S5, ! 5Ps,) [41]
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B. Simulation details

B.1. Solving di erential equations numerically

The ordinary di erential equation which describes the time developent of the density
matrix as introduced in chapter 5

@

@t
is well suited to be solved by numerical integration. Two approachesll be presented: a
simple one (Euler method) and a powerful widespread approach (Rye-Kutta method).

e ®.1)

The simplest numerical integration algorithm is the Euler method. Letis assume we have
a di erential equation

@wn) _ .
"ot y(1); (B.2)

which is integrated analytically to y(t) = e' with the initial condition y(0) = 1. For nite
time steps this di erential equation can be transformed to a di erace equation

=y ! y=y t (B.3)
The di erential equation is approximated by

ylt+1]:= ylt]+  ylty[t: (B.4)

For a time step of t =1 and the given initial condition the discrete calculated values are

tyltl | ylt] | ylt+1]
0| 1 1 2
1| 2 2 4
21 4| 4 8
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B. Simulation details

The comparison between the discrete and analytical integration if®vn in gure B.1. The
chosen time step t = 1 leads to a coarse approximation of the given di erential equation
The accuracy would increase by using smaller time steps.
y
10

(@] N NN ()] 0
(S
\ .
\ ..

Figure B.1.: Numerical integration ofy®= y using the Euler method.

The idea of the Euler method is improved by the Runge-Kutta algoritm (here presented
in forth order), which is used in Mathematica as default algorithm to solve di erential
equations numerically. The calculation rule and the calculated valuesrfthe example
y'=y; t=2are

@y

= f (t B.
o TEY) (B.5)
VIt+11:= Y+ (e + 280+ 23+ @) t (8.6)
a; = f(ty) (B.7)
t t t
a=f(t+ -yt 7a1)= f(t+ 7JY1) (B.8)
t t t
ag=f(t+ YT ?az): f(t+ ?JY2) (B.9)
ay=f(t+ ty+ tag)=f~f(t+ ty3) (B.10)
coe. a, | Yn | @
d; 1 1
o 2 2
as 3125
ay 7| 7
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With these coe cients the new value ofy can be calculated:
1
yt=2]=1+ 6(1+2 2+2 25+7) 2=5 (B.11)

The Runge-Kutta method will be explained with the graphical schemef gure B.2.
The rst part of the algorithm is similar to the Euler method. First the coe cient
a, is calculated (equation B.7) with a value according to the given di ereial equation
yo=vy; y=11 a; =1. With this new slope half a time step is executed illustrated by
the dashed line. At the new position the di erential equation is evalugd (B.8) and gives
a, = 2. This is the new slope (indicated by the arrow) for another half tp starting again
from t = 0. This third position is evaluated again (B.9) giving the slopea; = 3 for the last
(full) step performed which starts again at = 0. Here the forth coe cient a4 (B.10) can be
calculated. Now a weighted average (B.6) gives the slope for the igtation and the nal
position is reached, highlighted as the thick dot in the diagram. This atithm results in
a higher accuracy compared to the Euler method. The Runge-Kuattmethod outperforms
the Euler method due to a smaller error: the error per step for thEuler method is of order
( t)? whereas for the Runge-Kutta method it is ( t)°.

0 t
0 1 2

Figure B.2.: Numerical integration ofy®= y using the Runge-Kutta method.



B. Simulation details

B.2. Simulation in Java

In this section the core source code for the simulation of the densihatrix in time is shown.
This is possible since the di erential equation for a three-level atons only a system of
nine rst order di erential equations. These equations can be fuher reduced since the
density matrix is Hermitian. As a drawback,Java cannot handle complex numbers. Hence
the equations are solved for their real and imaginary part sepasly, which is denoted as
_Re and _Im in the following. Note that the levels of the atoms are addressed byimbers
not by letters (12 g, 22 e and 32r). The initial condition is given by equation (5.5) and
calculated at the initialization of the density matrix entries:

double Omegallnit = Omegal _Sampled[0];
double denominator = 4 Deltal Deltal + Gammal2 Gammal2
+ 2 Omegallnit Omegallnit;

double Rholl1Re =1 Omegallnit Omegallnit / denominator;
double Rho22Re =1 Rholl Re;
double Rhol2Re = 2 Omegallnit Deltal / denominator;

double Rhol2.Im
double Rho33.Re
double Rhol3.Re
double Rho13.Im
double Rho23.Re
double Rho23.Im

Omegal_lnit Gammal2 / denominator;

©Sofoco

The dynamic of the real system is described by the di erential equan (5.3). Here the
equation is solved by the Euler method since the code for the Runietta method does
not give any new insights and is almost the same as the Euler one bupeated four times.
The algorithm is divided into two parts. At rst the slope is calculated (denoted asD_) for
the next time step as presented in equation (B.4):

Omegal = OmegalSampled[t];

Omega2 = Omega2Sampled[t];

D_Rhol1Re = (Rhol2.Im Omegal) + Gammal2 Rho22Re;

D_Rho22Re = Rhol12_Im Omegal Rho23.Im Omega?2
Gammal2 Rho22Re + Gamma23 Rho33.Re;

D_Rho33.Re = Rho23_Im Omega2 Gamma23 Rho33.Re;

D_Rhol2 Re = Deltal Rhol12 Im (Omega2 Rhol3.Im) [/ 2.

(Rhol2_.Re Gammal2) / 2.;
D_Rhol3.Re = ( 2 (0.5 Omega2 Rhol2Im (Deltal + Delta2) Rho13.Im)
+ Rho23_Im Omegal Rhol3.Re Gamma23) / 2.;
D_Rho23.Re = ( 2 Rho23.Im Delta2 + Rhol3_.Im Omegal
Rho23 Re (Gammal2 + Gamma23)) / 2.;

D_Rhol2Im = ( 2 Rhol12 Re Deltal + Rhol3_.Re Omega2
Rho12.Im Gammal2 + Omegal (Rholl_Re Rho22.Re)) / 2.;
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D_Rho1l3.Im = (0.5 Omega2 Rhol1l2 Re (Deltal + Delta?2) Rhol1l3 Re)
(Rho23_.Re Omegal) / 2. (Rho13.Im Gammaz23) / 2.;
D_Rho23.Im = ( 2 Rho23 Re Delta2 Rhol3.Re Omegal

Rho23.Im (Gammal2 + Gamma23) + Omega2 (Rho22_Re Rho33.Re)) / 2.;

In the second part of the algorithm the propagation takes place:

Rholl Re += timeStep D_Rholl Re;
Rho22 Re += timeStep D_Rho22 Re;
Rho33.Re += timeStep D_Rho33.Re;

Rhol2 Re += timeStep D_Rhol2Re;
Rhol3.Re += timeStep D_Rhol3.Re;
Rho23.Re += timeStep D_Rho23.Re;

Rhol2 Im += timeStep D_Rhol2Im;
Rhol3.Im += timeStep D_Rho13.Im;
Rho23.Im += timeStep D_Rho23.Im;

This is already the full source code to calculate the temporal evolah of the density
matrix with Java. Since it is such a short code the performance of the Euler algorithis
outstanding and also of the Runge-Kutta method.

This model has also been extended to cover two or three interagiatoms. A performance
comparison is given in the next section, the increase of lines of codshe®wn here:

atoms | density matrix | lines of code for Euler method
1 3x3 18
2 9x9 162
3 27x27 1458
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B.3. Performance of Mathematica, Java and C ++

With Mathematica as a computational software program a vast variety of mathemiagl
problems can be solved. But due to its universality its performance sower than a native
program solving speci ¢ equations. Here a performance compansbetweenMathematica
as a generic computational software]ava and C+ which are native computer languages,
is given. In order to compare the performance between the di emetools a simulation for
one, two and three atoms is performed using the Euler method to agrate the di erential
equation. The time step is chosen to bet = 10 !°s and the simulation duration is 10°s.
Therefore 10 time steps are calculated. The results are shown in the following table

calc. time [ms] | calc. time [ms] | calc. time [ms]
atoms | density matrix | Mathematica Java C+
1 3x3 1 10 3 10 2 10°
2 9x9 2 10° 4 10 2 10
3 27x27 n.a. 1 1¢ 110

The simulations are computed on Intel Core i7 860 @ 2.80 GHz using agéncore. Note
that in the simulation for three atoms the implemented Hamiltonian hasonly one free
parameter ¢, and no decays are included. For the other simulations the decayinigatinels
were implemented and the parameters (e, ge; eg er; -..) Could be changed.

The performance rates of the di erent solving methods are as eagted. Mathematica at
least 1G times slower thanJava and C+ as a generic solving tool. The only signi cant
di erence betweenJava and C+ appears in the simulation for three atoms. Here the just-
in-time compiler of Java cannot optimize the calculation signi cantly anymore and the
precompiledC+ simulation is much faster.
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B. Simulation details

B.4. Various simulations

On the following pages di erent simulations of basic experimental pameters are given:
Detuning scan of cw laser g ( gure B.3)
Rabi frequency scan of cw laserge ( gure B.4)
Detuning scan of pulse ¢ ( gure B.5)
Rabi frequency scan of pulse ¢ (gure B.6)

The rst two scans of the cw laser for the ground state transitiorare presented since they
are not accessible in the experiment but can help to understand tisole system. The scan
parameters of all four simulations were chosen to have higher intties and frequencies
than used in the experiment.
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Detuning scan of cw laser g
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Figure B.3.: Detuning scan of pulsegye, y-axis: time [ns]
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Rabi frequency scan g of cw transition
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Figure B.4.: Rabi frequency scan 4. of cw transition, y-axis: time [ns]
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Detuning scan of pulse ¢
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Figure B.5.: Detuning scan of pulseg,, y-axis: time [ns]
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B. Simulation details

Rabi frequency scan of pulse
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